Download Free Polyimide In Electronics Book in PDF and EPUB Free Download. You can read online Polyimide In Electronics and write the review.

Polyimide is one of the most efficient polymers in many industries for its excellent thermal, electrical, mechanical, and chemical properties as well as its easy processability. In the electronic and electrical engineering industries, polyimide has widely been used for decades thanks to its very good dielectric and insulating properties at the high electric field and at high temperatures of around 200°C in long term-service. Moreover, polyimide appears essential for the development of new electronic devices where further considerations such as high power density, integration, higher temperature, thermal conduction management, energy storage, reliability, or flexibility are required in order to sustain the growing global electrical energy consumption. This book gathers interdisciplinary chapters on polyimide in various topics through state-of-the-art and original ongoing research.
Advanced Polyimide Materials: Synthesis, Characterization and Applications summarizes and reviews recent research and developments on several key PI materials. A wide array of PI materials are included, including high performance PI films for microelectronic fabrication and packaging, display and space applications, fiber-reinforced PI composites for structural applications in aerospace and aviation industries, and PI photoresists for integrated circuit packaging. The chemical features of PI are also described, including semi-alicyclic PIs, fluorinated PIs, phosphorous-containing PIs, silicon-containing PIs and other new varieties, providing a comprehensive overview on PI materials while also summarizing the latest research. The book serves as a valuable reference book for engineers and students working on polymer materials, microelectronics manufacturing and packaging in industries such as aerospace and aviation. - Reviews the latest research, development and future prospective of polyimides - Describes the progress made in the research on polyimide materials, including polyimide films, matrices for carbon fiber composites, coatings for microelectronics and display devices, forms and fibers - Presents a highly organized work that is composed of different sections that are easily compared
Polyimides are nowadays quite famous dielectrics and insulating materials widely used in electronics and electrical engineering applications from low voltage microelectronics up to high voltage engineering industry. They are well appreciated because of their excellent physical properties (i.e., thermal, electrical, and mechanical properties), as well as, their coating process ease either from a liquid or a gas phase. Consequently, polyimides appear in a various range of applications to efficiently separate metal levels or electrodes at different electrical potentials. This chapter intends to review the main chemical generalities of polyimides, the different monomer families, the coating and curing processes, and the main physical properties for electronic and high voltage industrial applications.
This is the first book to provide an in-depth presentation of photosensitive polyimides for electronic and photonic applications. The authors are leading specialists in this field from Japan, Europe and the U.S. From the Preface Aromatic polyimides were developed originally as thermostable flexible polymer films for space applications. Now polyimides have found widespread use in the manufacture of electronic devices and have been employed in increasingly diverse areas of electronics and information technology. In addition to their excellent thermal stability and high processability, a wide range of chemical and physical properties provided by molecular engineering makes polyimides highly versatile in the electronics and information industries. Lithography of polyimides is an inevitable process in using polyimides for microelectronic fields, and hence increasing research has been devoted to developing photosensitive polyimides, which make it unnecessary to use photoresists for patterning polyimides and diminishing markedly the number of steps in fabrication of various electronic devices. In addition, the development of technology of photosensitive polyimides is expected to play a great role in manufacturing photonic devices in the near future, when the design and control of hyper fine structures . . . including higher thermal stability and better processability would be essential.
Provides coverage on the full range of topics associated with polyimides, including structure, polymer fundamentals, and product areas. The text addresses both basic and applied aspects of the subject. It details the synthesis of polyimides, polyamideimides, and flourinated polyimides, explains the molecular design of photosensitive polyimides, and more.
The feature of polyimides and other heterocyclic polymers are now well-established and used for long term temperature durability in the range of 250 - 350'C. This book will review synthesis, mechanisms, ultimate properties, physico-chemical properties, processing and applications of such high performance materials needed in advanced technologies. It presents interdisciplinary papers on the state of knowledge of each topic under consideration through a combination of overviews and original unpublished research. The volume contains eleven chapters divided into three sections: Chemistry; Chemical and Physical Properties; and Applications.
Polyimide is an organic polymer that exhibits the highest level of heat resistance, exhibits excellent mechanical properties and electrical insulation, and is stable for a long period of time. In addition, since it is easy to obtain polymers with different physical characteristics by changing the combination of monomers, it is possible to obtain the desired properties according to the application, and it is used in a wide range of fields such as insulating protective films for semiconductors and electronic components. This chapter describes polyimides used in microelectronics applications such as semiconductors, electronic components, displays, image sensors, and lithium-ion secondary batteries. The development of practical aspects such as photosensitivity, low-temperature curability, and adhesion to copper when used in microelectronics will be described.
This volume chronicles the proceedings of the Third International Symposium on Polyimides and Other High Temperature Polymers: Synthesis, Characterization, and Applications, held in Orlando, December 17-19, 2003. This volume is divided into three parts. Part 1. “Synthesis, Properties and Bulk Characterization”; Part 2 “Hybrids and Composites” and Part 3 “Applications and General Papers”. The topics covered include: Synthesis, characterization and processing (including some novel approaches) of a variety of polyimides and other high temperature polymers; structure-property relationships; hybrids and nanocomposites using these materials and their characterization, properties and applications; segmental dynamics in polyimide materials; photoalignable polyimides; photoconductivity and photosensitivity of polyimides; ultrafiltration membranes from polyetherimide; polyimide as a tunneling barrier; polymer materials for nonlinear optical applications; alignment of SWNTs in rigid-rod polymer compositions; surface modification of polyimide; adhesion of Cu to polyimide surfaces; and polyimide erosion in a low Earth orbit space environment.
This is the first book to provide an in-depth presentation of photosensitive polyimides for electronic and photonic applications. The authors are leading specialists in this field from Japan, Europe and the U.S. From the Preface Aromatic polyimides were developed originally as thermostable flexible polymer films for space applications. Now polyimides have found widespread use in the manufacture of electronic devices and have been employed in increasingly diverse areas of electronics and information technology. In addition to their excellent thermal stability and high processability, a wide range of chemical and physical properties provided by molecular engineering makes polyimides highly versatile in the electronics and information industries. Lithography of polyimides is an inevitable process in using polyimides for microelectronic fields, and hence increasing research has been devoted to developing photosensitive polyimides, which make it unnecessary to use photoresists for patterning polyimides and diminishing markedly the number of steps in fabrication of various electronic devices. In addition, the development of technology of photosensitive polyimides is expected to play a great role in manufacturing photonic devices in the near future, when the design and control of hyper fine structures . . . including higher thermal stability and better processability would be essential.
The object of this book is to review and to discuss some important applications of polymers in electronics. The first three chapters discuss the current primary applications of polymers in semiconductor device manufacturing: polymers as resist materials for integrated circuit fabrication, polyimides as electronics packaging materials, and polymers as integrated circuits encapsulates.