Download Free Polycapillary Optics For Materials Science Book in PDF and EPUB Free Download. You can read online Polycapillary Optics For Materials Science and write the review.

The design and study of materials is a pivotal component to new discoveries in the various fields of science and technology. By better understanding the components and structures of materials, researchers can increase its applications across different industries. Materials Science and Engineering: Concepts, Methodologies, Tools, and Applications is a compendium of the latest academic material on investigations, technologies, and techniques pertaining to analyzing the synthesis and design of new materials. Through its broad and extensive coverage on a variety of crucial topics, such as nanomaterials, biomaterials, and relevant computational methods, this multi-volume work is an essential reference source for engineers, academics, researchers, students, professionals, and practitioners seeking innovative perspectives in the field of materials science and engineering.
Reports NIST research and development in the physical and engineering sciences in which the Institute is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Emphasis on measurement methodology and the basic technology underlying standardization.
X-ray line profile analysis is an effective and non-destructive method for the characterization of the microstructure in crystalline materials. Supporting research in the area of x-ray line profile analysis is necessary in promoting further developments in this field. X-Ray Line Profile Analysis in Materials Science aims to synthesize the existing knowledge of the theory, methodology, and applications of x-ray line profile analysis in real-world settings. This publication presents both the theoretical background and practical implementation of x-ray line profile analysis and serves as a reference source for engineers in various disciplines as well as scholars and upper-level students.
The most comprehensive and up-to-date optics resource available Prepared under the auspices of the Optical Society of America, the five carefully architected and cross-referenced volumes of the Handbook of Optics, Third Edition, contain everything a student, scientist, or engineer requires to actively work in the field. From the design of complex optical systems to world-class research and development methods, this definitive publication provides unparalleled access to the fundamentals of the discipline and its greatest minds. Individual chapters are written by the world's most renowned experts who explain, illustrate, and solve the entire field of optics. Each volume contains a complete chapter listing for the entire Handbook, extensive chapter glossaries, and a wealth of references. This pioneering work offers unprecedented coverage of optics data, techniques, and applications. Volume I covers geometrical and physical optics, polarized light, components, and instruments. Volume II covers design, fabrications, testing, sources, detectors, radiometry, and photometry. Volume III, all in full color, covers vision and vision optics. Volume IV covers optical properties of materials, nonlinear optics, and quantum optics. Volume V covers atmospheric optics, modulators, fiber optics, and x-ray and neutron optics. Visit www.HandbookofOpticsOnline.com to search all five volumes and download a comprehensive index.
Endlich ein Fachbuch mit detaillierten Informationen zu einer der fortschrittlichsten Methoden zur Materialcharakterisierung. Ein herausragendes Team aus Herausgebern und Autoren von renommierten Einrichtungen und Institutionen beschäftigt sich mit Synchrotron-Verfahren, die sich in der Materialforschung bewährt haben. Nach einer Einführung in die Synchrotronstrahlung und ihrer Quellen werden die verschiedenen Techniken beschrieben, die von diesem besonders hellen Licht profitieren, u. a. Röntgenabsorption, Diffraktion, Streuung, Bildgebung und Lithographie. Zum Schluss folgt ein Überblick über die Anwendungen der Synchrotronstrahlung in den Materialwissenschaften. Dieses einzigartige, unabdingbare Referenzwerk für akademische Forscher und Forscher aus der Industrie verbindet Spezialisten aus der Synchrotronforschung und Materialwissenschaftler.
Tomography provides three-dimensional images of heterogeneous materials or engineering components, and offers an unprecedented insight into their internal structure. By using X-rays generated by synchrotrons, neutrons from nuclear reactors, or electrons provided by transmission electron microscopes, hitherto invisible structures can be revealed which are not accessible to conventional tomography based on X-ray tubes. This book is mainly written for applied physicists, materials scientists and engineers. It provides detailed descriptions of the recent developments in this field, especially the extension of tomography to materials research and engineering. The book is grouped into four parts: a general introduction into the principles of tomography, image analysis and the interactions between radiation and matter, and one part each for synchrotron X-ray tomography, neutron tomography, and electron tomography. Within these parts, individual chapters written by different authors describe important versions of tomography, and also provide examples of applications to demonstrate the capacity of the methods. The accompanying CD-ROM contains some typical data sets and programs to reconstruct, analyse and visualise the three-dimensional data.
Microbeam Analysis provides a major forum for the discussion of the latest microanalysis techniques using electron, ion, and photon beams. The volume contains 250 papers from the leading researchers in this advancing field. Researchers in physics, materials science, and electrical and electronic engineering will find useful information in this volume.
Neutron optics studies the interactions of a beam of slow neutrons with matter. This book updates various advances on neutron optics. There will be a focus on the very active topics of neutron imaging (NI) and neutron spin optics (NSO). The book will also present applications of neutron beams in biomedicine, such as Boron Neutron Capture Therapy (BNCT) and related techniques. Features: Discusses diffraction and interference of slow neutrons, including computational approaches Reviews neutron imaging (NI) and neutron spin optics (NSO) Treats two major sources of slow neutron beams: (1) fission reactions at nuclear reactors and (2) collisions in particle accelerators (small ones, spallation sources) of charged particle beams with targets of heavy atoms Selects subjects on fundamental quantum aspects of slow neutrons and on confined propagation and waveguiding thereof Updates slow neutron beams and BNCT