Download Free Polyamines In Plant Biotechnology Food Nutrition And Human Health Book in PDF and EPUB Free Download. You can read online Polyamines In Plant Biotechnology Food Nutrition And Human Health and write the review.

Hazardous and Trace Materials in Soil and Plants: Sources, Effects and Management explores the latest advancements in reducing, avoiding and eliminating soil contaminants that challenge the health and safety of agricultural plants. With a focus on minimizing the production of those hazardous substances, controlling their distribution and ensuring safe utilization, the book explores each contributing area and provides insights toward improved, sustainable and secure production. This is an excellent reference resource on both current research and future directions from laboratory research to field applications. The combined impacts of climate change and industrialization have led to increased and diversified threats to the health of the soil in which our food crops are grown, as well as in the plants themselves. This dual-hazard scenario is increasingly recognized as a threat to not just the environment, but to global food security as agricultural soils contaminated with pollutants alter plant metabolism, thus resulting in reduced crop quality and production quantity. - Addresses the challenges of mitigating toxic substances in plants, including agricultural crops - Presents current status and future prospects for managing biotic and abiotic environmental stress factors through plant stress tolerance mechanisms - Includes chapters that address both biotic and abiotic stresses, agricultural and environmental science, toxicology, biotechnology, nanotechnology, and molecular studies - Integrates insights and developments between environmental and plant science
Polyamines are small organic compounds found in all living organisms. In recent years, there have been many exciting advances in our understanding of plant polyamines, such as the determination of the biosynthetic and catabolic pathways of plant polyamines and the identification of the roles that plant polyamines play in cellular processes. This Special Issue contains six original research papers and three review articles, providing valuable insights and information for future polyamine-related research.
This book covers aspects of biological nitrogen fixation along with the unique signaling and interaction between the diazotrophic bacteria and plants, especially the non-legumes. Nitrogen is the most important growth-limiting nutrient in the ecosystems and biological nitrogen fixation involving microbial symbionts, mainly rhizobia and legumes holds enormous interest across the globe. However, free-living rhizobacteria of non-legumes especially cereals, also establish themselves within the root system, fixing nitrogen and contributing to plant productivity, soil fertility, and agricultural sustainability. These non-symbiotic nitrogen fixers additionally exhibit various plant growth-promoting traits elevating productivity, fortifying nutrient content, and managing water stress in plants. The recent perspectives highlighting the mechanisms and background of non-symbiotic nitrogen fixation provide answers to unravel the potential of nitrogenase and various spectra of habitats of rhizobia and other diazotrophic bacteria. Further, the application of genetic engineering and the development of nitrogen-fixing cereals can provide a possible solution to the problem of food shortage. The book includes various scientific inputs providing comprehensive knowledge about the emergence of agricultural sustainability through nitrogen-fixing bacteria. The book illustrates the systematic mechanisms involved in biological nitrogen fixation through various illustrations, schematic drawings, and flow charts aiding in better understanding. The chapters elaborate on the physiology and metabolism of plant-bacteria interaction in different crops under diverse environmental conditions. Thus, the volume will provide a holistic scenario helping in advancing the novel plant-microbe interactions, cell-signaling, and plant-molecular interactions. The book will assist the agronomists, microbiologists, ecologists, plant pathologists, molecular biologists, environmentalists, policymakers, conservationists, and NGOs to develop biofertilizers and bioinoculants using various genera of microbes and contribute to the targets of sustainable goals in an eco-friendly manner.
The importance of polyamines for all living cells has been recognized since spermine was discovered in human semen more than 300 years ago. Polyamine research intensified when analytical methods were developed for their determination, particularly in tissues and biological fluids. Discovering their close correlation with cancer, and that polyamine concentrations change during the cell cycle, gave reason for further research in this topic. Polyamines in Health and Nutrition concentrates on the direction of polyamine research which has the capacity to influence and benefit our health and which can explain some of the discrepancies and failures of earlier research. It is important to recognize the dietary contribution to the polyamine body pool and to investigate how the polyamine content of the diet can be changed, with the ultimate aim of using this information to improve our health.
Soybeans represent an excellent source of high-quality protein with a low content in saturated fat. They can be made into various foods, such as tofu, miso, breakfast cereals, energy bars, and soy cakes. Much research has been carried out on the positive health effects of soybeans, and increasing evidence shows that consumption of soybeans may reduce the risk of osteoporosis, have a beneficial role in chronic renal disease, lower plasma cholesterol, and decrease the risk of coronary heart disease. Phytochemicals in Soybeans: Bioactivity and Health Benefits describes in detail the chemical characteristics of health-promoting components of soybeans and soybean products, their impacts on human health, and emerging technologies about soybean processing and new products. With 22 chapters containing the most recent information associated with soybean products, topics of the chapters include soybeans’ role in human nutrition and health, their composition and physicochemical properties, action mechanism of their physiologic function, processing engineering technology, food safety, and quality control. Key Features: Promotes soybean products as functional food with advanced processing technology Presents the basic research containing the experimental design, methods used, and a detailed description of the results. Provides a systematic approach to the subject to facilitate a better comprehension of the subjects with illustrations and diagrams Includes a comprehensive and up-to-date list of references With contributions from authors around the world who are experts in their field, this book contains new information on the health impacts of soybean consumption, new product development, and alternative technologies of soybean processing, and will be useful for professors and researchers, as well as graduate and undergraduate students alike.
The volume presents existing and novel management approaches that are in use or have a great potential to be used to maintain the postharvest quality of fresh produce in terms of microbiological safety, nutrition, and sensory quality. In comparison to traditional synthetic chemicals, these eco-friendly molecules are equally effective with respect to slowing the physiological and biochemical changes in harvested produce. Application of terpenic compounds, phenolic compounds, salicylic acid, methyl jasmonates, hydrogen peroxide, ethanol, sulphur compounds, polyamines, plant growth regulators, active carbohydrates, ozone, hexanal and nitric oxide have been proven effective in minimizing storage disorders like chilling injury, scald, fungal diseases like stem-end rot, blue mould rot, green mould rot, anthracnose, regulation of ripening and senescence, etc. This book will be a standard reference work for the management of shelf life in the fresh produce industry.