Download Free Points And Curves In The Monster Tower Book in PDF and EPUB Free Download. You can read online Points And Curves In The Monster Tower and write the review.

Cartan introduced the method of prolongation which can be applied either to manifolds with distributions (Pfaffian systems) or integral curves to these distributions. Repeated application of prolongation to the plane endowed with its tangent bundle yields the Monster tower, a sequence of manifolds, each a circle bundle over the previous one, each endowed with a rank $2$ distribution. In an earlier paper (2001), the authors proved that the problem of classifying points in the Monster tower up to symmetry is the same as the problem of classifying Goursat distribution flags up to local diffeomorphism. The first level of the Monster tower is a three-dimensional contact manifold and its integral curves are Legendrian curves. The philosophy driving the current work is that all questions regarding the Monster tower (and hence regarding Goursat distribution germs) can be reduced to problems regarding Legendrian curve singularities.
In this memoir the authors revisit Almgren's theory of $Q$-valued functions, which are functions taking values in the space $\mathcal{A}_Q(\mathbb{R}^{n})$ of unordered $Q$-tuples of points in $\mathbb{R}^{n}$. In particular, the authors: give shorter versions of Almgren's proofs of the existence of $\mathrm{Dir}$-minimizing $Q$-valued functions, of their Holder regularity, and of the dimension estimate of their singular set; propose an alternative, intrinsic approach to these results, not relying on Almgren's biLipschitz embedding $\xi: \mathcal{A}_Q(\mathbb{R}^{n})\to\mathbb{R}^{N(Q,n)}$; improve upon the estimate of the singular set of planar $\mathrm{D}$-minimizing functions by showing that it consists of isolated points.
This paper shows that properties of projective modules over a group ring $\mathbf{Z}_p[\Delta]$, where $\Delta$ is a finite Galois group, can be used to study the behavior of certain invariants which occur naturally in Iwasawa theory for an elliptic curve $E$. Modular representation theory for the group $\Delta$ plays a crucial role in this study. It is necessary to make a certain assumption about the vanishing of a $\mu$-invariant. The author then studies $\lambda$-invariants $\lambda_E(\sigma)$, where $\sigma$ varies over the absolutely irreducible representations of $\Delta$. He shows that there are non-trivial relationships between these invariants under certain hypotheses.
Contains the proof of a noncommutative analogue of the inequality for sums of free random variables over a given von Neumann subalgebra.
"March 2010, Volume 204, number 961 (end of volume)."
"Volume 205, number 964 (third of 5 numbers)."
"Volume 212, number 999 (end of volume)."
"Volume 204, number 960 (fourth of 5 numbers)."
"Volume 205, number 965 (fourth of 5 numbers)."
The authors apply a theorem of J. Lurie to produce cohomology theories associated to certain Shimura varieties of type $U(1,n-1)$. These cohomology theories of topological automorphic forms ($\mathit{TAF}$) are related to Shimura varieties in the same way that $\mathit{TMF}$ is related to the moduli space of elliptic curves.