Download Free Point Processes And Jump Diffusions Book in PDF and EPUB Free Download. You can read online Point Processes And Jump Diffusions and write the review.

The theory of marked point processes on the real line is of great and increasing importance in areas such as insurance mathematics, queuing theory and financial economics. However, the theory is often viewed as technically and conceptually difficult and has proved to be a block for PhD students looking to enter the area. This book gives an intuitive picture of the central concepts as well as the deeper results, while presenting the mathematical theory in a rigorous fashion and discussing applications in filtering theory and financial economics. Consequently, readers will get a deep understanding of the theory and how to use it. A number of exercises of differing levels of difficulty are included, providing opportunities to put new ideas into practice. Graduate students in mathematics, finance and economics will gain a good working knowledge of point-process theory, allowing them to progress to independent research.
Develop a deep understanding and working knowledge of point-process theory as well as its applications in finance.
Here is a rigorous introduction to the most important and useful solution methods of various types of stochastic control problems for jump diffusions and its applications. Discussion includes the dynamic programming method and the maximum principle method, and their relationship. The text emphasises real-world applications, primarily in finance. Results are illustrated by examples, with end-of-chapter exercises including complete solutions. The 2nd edition adds a chapter on optimal control of stochastic partial differential equations driven by Lévy processes, and a new section on optimal stopping with delayed information. Basic knowledge of stochastic analysis, measure theory and partial differential equations is assumed.
This is the second volume of the reworked second edition of a key work on Point Process Theory. Fully revised and updated by the authors who have reworked their 1988 first edition, it brings together the basic theory of random measures and point processes in a unified setting and continues with the more theoretical topics of the first edition: limit theorems, ergodic theory, Palm theory, and evolutionary behaviour via martingales and conditional intensity. The very substantial new material in this second volume includes expanded discussions of marked point processes, convergence to equilibrium, and the structure of spatial point processes.
This self-contained, practical, entry-level text integrates the basic principles of applied mathematics, applied probability, and computational science for a clear presentation of stochastic processes and control for jump diffusions in continuous time. The author covers the important problem of controlling these systems and, through the use of a jump calculus construction, discusses the strong role of discontinuous and nonsmooth properties versus random properties in stochastic systems.
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
A practical, entry-level text integrating the basic principles of applied mathematics and probability, and computational science.
We consider the nonlinear filtering problem for partially observed Generalized Hawkes Processes, which can be applied in the context of portfolio credit risk. The problem belongs to the larger class of hidden Markov models, where the counting process is observed at discrete points in time and the observations are sparse, while the intensity driving process in unobservable. We construct the conditional distribution of the process given the information filtration and we discuss the analytical and numerical properties of the corresponding filters. In particular, we study the sensitivity of the filters with respect to the parameters of the model, and we obtain a monotonicity result with respect to the jump and the volatility terms driving the intensity. Using the scaled process, we provide necessary and sufficient conditions for the frequency of time observations in terms of the parameters of the model, to ensure a good performance of the filter. We also address the problem of parameter estimation for the Generalized Hawkes Process in the framework of the EM algorithm, and we analyze the effect of the self-exciting feature of our process on the asymptotic and numerical properties of the estimators.
The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.
Over the last two decades, risk-sensitive control has evolved into an innovative and successful framework for solving dynamically a wide range of practical investment management problems.This book shows how to use risk-sensitive investment management to manage portfolios against an investment benchmark, with constraints, and with assets and liabilities. It also addresses model implementation issues in parameter estimation and numerical methods. Most importantly, it shows how to integrate jump-diffusion processes which are crucial to model market crashes.With its emphasis on the interconnection between mathematical techniques and real-world problems, this book will be of interest to both academic researchers and money managers. Risk-sensitive investment management links stochastic control and portfolio management. Because of its distinct emphasis on integrating advanced theoretical concepts into practical dynamic investment management tools, this book stands out from the existing literature in fundamental ways. It goes beyond mainstream research in portfolio management in a traditional static setting. The theoretical developments build on contemporary research in stochastic control theory, but are informed throughout by the need to construct an effective and practical framework for dynamic portfolio management.This book fills a gap in the literature by connecting mathematical techniques with the real world of investment management. Readers seeking to solve key problems such as benchmarked asset management or asset and liability management will certainly find it useful.