Download Free Plate Tectonics And Great Earthquakes Book in PDF and EPUB Free Download. You can read online Plate Tectonics And Great Earthquakes and write the review.

The theory of plate tectonics transformed earth science. The hypothesis that the earth’s outermost layers consist of mostly rigid plates that move over an inner surface helped describe the growth of new seafloor, confirm continental drift, and explain why earthquakes and volcanoes occur in some places and not others. Lynn R. Sykes played a key role in the birth of plate tectonics, conducting revelatory research on earthquakes. In this book, he gives an invaluable insider’s perspective on the theory’s development and its implications. Sykes combines lucid explanation of how plate tectonics revolutionized geology with unparalleled personal reflections. He entered the field when it was on the cusp of radical discoveries. Studying the distribution and mechanisms of earthquakes, Sykes pioneered the identification of seismic gaps—regions that have not ruptured in great earthquakes for a long time—and methods to estimate the possibility of quake recurrence. He recounts the various phases of his career, including his antinuclear activism, and the stories of colleagues around the world who took part in changing the paradigm. Sykes delves into the controversies over earthquake prediction and their importance, especially in the wake of the giant 2011 Japanese earthquake and the accompanying Fukushima disaster. He highlights geology’s lessons for nuclear safety, explaining why historic earthquake patterns are crucial to understanding the risks to power plants. Plate Tectonics and Great Earthquakes is the story of a scientist witnessing a revolution and playing an essential role in making it.
This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.
Presents an introduction to volcanoes and earthquakes, explaining how the movement of the Earth's interior plates cause their formation and describing the volcanoes which currently exist around the world as well as some of the famous earthquakes of the nineteenth through twenty-first cenuturies.
This book goes into great detail about the different layers of the Earth and how the shifting tectonic plates can cause natural disasters, such as earthquakes and tsunamis. In-depth information and stunning photographs reinforce the informative text.
The beginning of the new millennium has been particularly devastating in terms of natural disasters associated with tectonic plate boundaries, such as earthquakes in Sumatra, Chile, Japan, Tahiti, and Nepal; the Indian Ocean and the Pacific Ocean tsunamis; and volcanoes in Indonesia, Chile, Iceland that have produced large quantities of ash causing major disruption to aviation. In total, half a million people were killed by such natural disasters. These recurring events have increased our awareness of the destructive power of natural hazards and the major risks associated with them. While we have come a long way in the search for understanding such natural phenomena, and although our knowledge of Earth dynamics and plate tectonics has improved enormously, there are still fundamental uncertainties in our understanding of natural hazards. Increased understanding is crucial to improve our capacity for hazard prediction and mitigation. Volume highlights include: Main concepts associated with tectonic plate boundaries Novel studies on boundary-related natural hazards Fundamental concepts that improve hazard prediction and mitigation Plate Boundaries and Natural Hazards will be a valuable resource for scientists and students in the fields of geophysics, geochemistry, plate tectonics, natural hazards, and climate science. Read an interview with the editors to find out more: https://eos.org/editors-vox/plate-boundaries-and-natural-hazards
This introduction to seismological theory and the principles of plate tectonics also develops a practical approach to the interpretation of seismograms for physicists and mathematicians as well as geologists.
On March 27, 1964, at 5-36 p.m., the biggest earthquake ever recorded in North America--and the second biggest ever in the world, measuring 9.2 on the Richter scale--struck Alaska, devastating coastal towns and villages and killing more than 130 people in what was then a relatively sparsely populated region. In a riveting tale about the almost unimaginable brute force of nature, New York Times science journalist Henry Fountain, in his first trade book, re-creates the lives of the villagers and townspeople living in Chenega, Anchorage, and Valdez; describes the sheer beauty of the geology of the region, with its towering peaks and 20-mile-long glaciers; and reveals the impact of the quake on the towns, the buildings, and the lives of the inhabitants. George Plafker, a geologist for the U.S. Geological Survey with years of experience scouring the Alaskan wilderness, is asked to investigate the Prince William Sound region in the aftermath of the quake, to better understand its origins. His work confirmed the then controversial theory of plate tectonics that explained how and why such deadly quakes occur, and how we can plan for the next one.
Consisting of more than 150 articles written by leading experts, this authoritative reference encompasses the entire field of solid-earth geophysics. It describes in detail the state of current knowledge, including advanced instrumentation and techniques, and focuses on important areas of exploration geophysics. It also offers clear and complete coverage of seismology, geodesy, gravimetry, magnetotellurics and related areas in the adjacent disciplines of physics, geology, oceanography and space science.
The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.
Everybody knows—or thinks they know—Charles Darwin, the father of evolution and the man who altered the way we view our place in the world. But what most people do not know is that Darwin was on board the HMS Beagle as a geologist—on a mission to examine the land, not flora and fauna.Tracing Darwin’s footsteps in South America and beyond, geologist Rob Wesson sets out on a trek across the Andes, repeating the nautical surveys made by the Beagle’s crew, hunting for fossils in Uruguay and Argentina, and explores traces of long vanished glaciers in Scotland and Wales. By following Darwin’s path literally and intellectually, Rob experiences the landscape that absorbed Darwin, followed his reasoning about what he saw, and immerses himself in the same questions about the earth. Upon Darwin’s return from the five-year journey, he conceived his theory of tectonics—his first theory. These concepts and attitudes—the vastness of time; the enormous cumulative impact of almost imperceptibly slow change; change as a constant feature of the environment—underlie his subsequent discoveries in evolution. And this peculiar way of thinking remains vitally important today as we enter the Anthropocene.