Download Free Plasmon Enhanced Light Matter Interactions Book in PDF and EPUB Free Download. You can read online Plasmon Enhanced Light Matter Interactions and write the review.

This book highlights cutting-edge research in surface plasmons, discussing the different types and providing a comprehensive overview of their applications. Surface plasmons (SPs) receive special attention in nanoscience and nanotechnology due to their unique optical, electrical, magnetic, and catalytic properties when operating at the nanoscale. The excitation of SPs in metal nanostructures enables the manipulation of light beyond the diffraction limit, which can be utilized for enhancing and tailoring light-matter interactions and developing ultra-compact high-performance nanophotonic devices for various applications. With clear and understandable illustrations, tables, and descriptions, this book provides physicists, materials scientists, chemists, engineers, and their students with a fundamental understanding of surface plasmons and device applications as a basis for future developments.
This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light–matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light–matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.
This up-to-date overview describes in detail the physics of localized surface plasmon polaritons excited near fine metallic structures and the principles of near-field optics and microscopy related to this localized field. It also covers wider fields, from local spectroscopy to atom manipulation.
This book deals with all aspects of plasmonics, basics, applications and advanced developments. Plasmonics is an emerging field of research dedicated to the resonant interaction of light with metals. The light/matter interaction is strongly enhanced at a nanometer scale which sparks a keen interest of a wide scientific community and offers promising applications in pharmacology, solar energy, nanocircuitry or also light sources. The major breakthroughs of this field of research originate from the recent advances in nanotechnology, imaging and numerical modelling. The book is divided into three main parts: extended surface plasmons polaritons propagating on metallic surfaces, surface plasmons localized on metallic particles, imaging and nanofabrication techniques. The reader will find in the book: Principles and recent advances of plasmonics, a complete description of the physics of surface plasmons, a historical survey with emphasize on the emblematic topic of Wood's anomaly, an overview of modern applications of molecular plasmonics and an extensive description of imaging and fabrications techniques.
This volume presents a considerable number of interrelated contributions dealing with the new scientific ability to shape and control matter and electromagnetic fields on a sub-wavelength scale. The topics range from the fundamental ones, such as photonic metamateriials, plasmonics and sub-wavelength resolution to the more applicative, such as detection of single molecules, tomography on a micro-chip, fluorescence spectroscopy of biological systems, coherent control of biomolecules, biosensing of single proteins, terahertz spectroscopy of nanoparticles, rare earth ion-doped nanoparticles, random lasing, and nanocoax array architecture. The various subjects bridge over the disciplines of physics, biology and chemistry, making this volume of interest to people working in these fields. The emphasis is on the principles behind each technique and on examining the full potential of each technique. The contributions that appear in this volume were presented at a NATO Advanced Study Institute that was held in Erice, Italy, 3-18 July, 2011. The pedagogical aspect of the Institute is reflected in the topics presented in this volume.
This book presents the latest results of quantum properties of light in the nanostructured environment supporting surface plasmons, including waveguide quantum electrodynamics, quantum emitters, strong-coupling phenomena and lasing in plasmonic structures. Different approaches are described for controlling the emission and propagation of light with extreme light confinement and field enhancement provided by surface plasmons. Recent progress is reviewed in both experimental and theoretical investigations within quantum plasmonics, elucidating the fundamental physical phenomena involved and discussing the realization of quantum-controlled devices, including single-photon sources, transistors and ultra-compact circuitry at the nanoscale.
Two-dimensional (2D) materials have attracted tremendous interest since the study of graphene in the early 21st century. With their thickness in the angstrom-to-nanometer range, 2D materials, including graphene, transition metal dichalcogenides, phosphorene, silicene, and other inorganic and organic materials, can be an ideal platform to study fundamental many-body interactions because of reduced screening and can also be further engineered for nanophotonic applications. This book compiles research outcomes of leading groups in the field of 2D materials for nanophotonic physics and devices. It describes research advances of 2D materials for various nanophotonic applications, including ultrafast lasers, atomically thin optical lenses, and gratings to inelastically manipulate light propagation, their integrations with photonic nanostructures, and light–matter interactions. The book focuses on actual applications, while digging into the physics underneath. It targets advanced undergraduate- and graduate-level students of nanotechnology and researchers in nanotechnology, physics, and chemistry, especially those with an interest in 2D materials.
The investigation of light-matter interactions in materials, especially those on the nanoscale, represents perhaps the most promising avenue for scientific progress in the fields of photonics and plasmonics. This book examines a variety of topics, starting from fundamental principles, leading to the current state of the art research. For example, this volume includes a chapter on the sensing of biological molecules with optical resonators (microspheres) combined with plasmonic systems, where the response this system are described in a fundamental and elegant manner using coupled mode theory. Symmetry plays a major role in the book. One chapter on time reversal symmetry in electromagnetic theory describes how to control the properties of light (e.g. scattering and directionality of the flow of light) in materials with certain topological invariants. Another chapter where symmetry is prominent reformulates, using a gentle and pedagogical approach, Maxwell’s Equations into a new set of fields that reveal a “handedness” symmetry in electromagnetic theory, which can be applied to photonic systems in, for example, the sensing of chiral molecules and understanding the conditions for zero reflection. Also, for students and researchers starting in the field of nanoplasmonics, the book includes a tutorial on the finite element time domain simulation of nanoplasmonic systems. Other topics include photonic systems for quantum computing, nanoplasmonics, and optical properties of nano and bulk materials. The authors take a pedagogical approach to their topic, making the book an excellent reference for graduate students and scientists starting in the fields of photonics or plasmonics.
Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.
Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors. - Reviews the fundamental science, available computational tools, experimental systems, and a wide range of applications of plasmonics - Connects the cross-cutting science of the physics of electromagnetic light scattering by particles, plasmonics and phononic interactions at the electronic, molecular and lattice levels of materials - Reviews applications of light-matter interactions of particles, aerosols, hydrosols and localized plasmonics