Download Free Plasma Jet Technology Book in PDF and EPUB Free Download. You can read online Plasma Jet Technology and write the review.

There is growing interest in the use of physical plasmas (ionized gases) for biomedical applications, especially in the framework of so-called “plasma medicine”, which exploits the action of low-power, atmospheric pressure plasmas for therapeutic purposes. Such plasmas are “cold plasmas”, in the sense that only electrons have a high temperature, whereas ions and the neutral gas particles are at or near room temperature. As a consequence, the “plasma flame” can be directly applied to living matter without appreciable thermal load. Reactive chemical species, charged particles, visible and UV radiation, and electric fields are interaction channels of the plasma with pathogens, cells, and tissues, which can trigger a variety of different responses. Possible applications include disinfection, wound healing, cancer treatment, non-thermal blood coagulation, just to mention some. The understanding of the mechanisms of plasma action on living matter requires a strongly interdisciplinary approach, with competencies ranging from plasma physics and technology to chemistry, to biology and finally to medicine. This book is a collection of work that explores recent advances in this field.
Nonequilibrium atmospheric pressure plasma jets (N-APPJs) generate plasma in open space rather than in a confined chamber and can be utilized for applications in medicine. This book provides a complete introduction to this fast-emerging field, from the fundamental physics, to experimental approaches, to plasma and reactive species diagnostics. It provides an overview of the development of a wide range of plasma jet devices and their fundamental mechanisms. The book concludes with a discussion of the exciting application of plasmas for cancer treatment. The book provides details on experimental methods including expert tips and caveats. covers novel devices driven by various power sources and the impact of operating conditions on concentrations and fluxes of the reactive species. discusses the latest advances including theory, modeling, and simulation approaches. gives an introduction, overview and details on state of the art diagnostics of small scale high gradient atmospheric pressure plasmas. covers the use of N-APPJs for cancer applications, including discussion of destruction of cancer cells, mechanisms of action, and selectivity studies. XinPei Lu is a Chair Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology. Stephan Reuter is currently Visiting Professor at Université Paris-Saclay. In a recent Alexander von Humboldt research fellowship at Princeton University, he performed ultrafast laser spectroscopy on cold plasmas. Mounir Laroussi is Professor of Electrical and Computer Engineering and director of the Plasma Engineering and Medicine Institute at Old Dominion University. He is a Fellow of IEEE and recipient of an IEEE Merit Award. DaWei Liu is Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology.
This comprehensive text is suitable for researchers and graduate students of a ‘hot’ new topic in medical physics. Written by the world’s leading experts, this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medical applications, the medicine to apply the technology not only in-vitro but also in-vivo testing and the biology to understand complicated bio-chemical processes involved in plasma interaction with living tissues.
Non-equilibrium atmospheric pressure plasma jets (APPJs) are of intense interest in current low-temperature plasma research because of their immense potential for material processing and biomedical applications. Depending on the jet configuration and the electrical excitation, plasma characteristics including heat, charged particle, electric field, and chemically active species may differ significantly. Other important parameters of importance in these studies are the kind of utilized working gas and gas flow rate. This book presents the electrical characterization of DBD-based APPJs for three electrode arrangements: ring electrode, pin electrode and floating helix electrode configurations. The analysis presented here will serve to help in establishing an optimum range of operation for a cold plasma jet without arcing and without any physical damage to the electrodes. Furthermore, the experimental results provided in the book establish the significance of the type of working gas on the power consumption and on the jet length obtained. These developed cold DBD-based APPJs of larger lengths may be useful for diverse biological applications and surface treatments.
The demands of industry for creating new functional materials with predetermined properties have stimulated an increasing interest in the investigation of processes occurring in plasma jets of complex chemical composition (homogeneous and heterogeneous) as well as their interaction with hard surfaces. This Proceedings volume contains contributions from leading international specialists on plasma science and technology which were presented at the 2nd International Workshop ''Plasma Jets in the Development in of New Materials Technology'', 3--9 September 1990, Frunze (USSR). The scope of the workshop incorporated the following aspects: modelling of the processes of momentum heat and mass transfer in homogeneous and heterogeneous plasma jets as well as interaction between the particles and the base; diagnostics of the parameters of gas and disperse phases in plasma flows; plasma-spraying processes investigations; processes of treatment and production of materials, including powder materials.
Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials and Biomedical Fields provides both an introduction and practical guide to plasma synthesis, modification and processing of polymers, their composites, nancomposites, blends, IPNs and gels. It examines the current state-of-the-art and new challenges in the field, including the use of plasma treatment to enhance adhesion, characterization techniques, and the environmental aspects of the process. Particular attention is paid to the effects on the final properties of composites and the characterization of fiber/polymer surface interactions. This book helps demystify the process of plasma polymerization, providing a thorough grounding in the fundamentals of plasma technology as they relate to polymers. It is ideal for materials scientists, polymer chemists, and engineers, acting as a guide to further research into new applications of this technology in the real world. - Enables materials scientists and engineers to deploy plasma technology for surface treatment, characterization and analysis of polymeric materials - Reviews the state-of-the-art in plasma technology for polymer synthesis and processing - Presents detailed coverage of the most advanced applications for plasma polymerization, particularly in medicine and biomedical engineering, areas such as implants, biosensors and tissue engineering
Although a considerable amount of information concerning the applications for arc plasmas in the materials sciences is available, it is contained in literally thousands of separate manuals, technical notes, textbooks, and government and industrial reports. Each source generally deals with only one specific application or, at best, a narrow range of utilization. This book was developed to provide a comprehensive and up-to-date compilation of information in the technology of arc plasma utilization. The book is divided into two general categories: flame spraying and materials evaluation. In the flame spraying section a comprehensive review of the plasma spraying process is presented. The design and operation of plasma spraying equipment are described. Included are a description of the nature of a plasma, and the design and operation of plasma generators, powder feed systems and accessory control equip ment. The general process procedures, and associated process variables are de scribed. Particular emphasis is given to the particle heating process and the mechanisms for adherence and cohesion of coatings. Competitive flame spraying equipment is also detailed (combustion process, detonation and electric arc) and compared with the plasma spray process. A discussion and compilation of flame sprayed ceramic and metal materials, their properties and applications are also included.