Jörg Florian Friedrich
Published: 2022-07-15
Total Pages: 805
Get eBook
NONTHERMAL PLASMAS FOR MATERIALS PROCESSING This unique book covers the physical and chemical aspects of plasma chemistry with polymers and gives new insights into the interaction of physics and chemistry of nonthermal plasmas and their applications in materials science for physicists and chemists. The properties and characteristics of plasmas, elementary (collision) processes in the gas phase, plasma surface interactions, gas discharge plasmas and technical plasma sources, atmospheric plasmas, plasma diagnostics, polymers and plasmas, plasma polymerization, post-plasma processes, plasma, and wet-chemical processing, plasma-induced generation of functional groups, and the chemical reactions on these groups along with a few exemplary applications are discussed in this comprehensive but condensed state-of-the-art book on plasma chemistry and its dependence on plasma physics. While plasma physics, plasma chemistry, and polymer science are often handled separately, the aim of the authors is to harmoniously join the physics and chemistry of low-pressure and atmospheric-pressure plasmas with polymer surface chemistry and polymerization and to compare such chemistry with classic chemistry. Readers will find in these chapters Interaction of plasma physics and chemistry in plasmas and at the surface of polymers; Explanation and interpretation of physical and chemical mechanisms on plasma polymerization and polymer surface modification; Introduction of modern techniques in plasma diagnostics, surface analysis of solids, and special behavior of polymers on exposure to plasmas; Discussion of the conflict of energy-rich plasma species with permanent energy supply and the much lower binding energies in polymers and alternatives to avoid random polymer decomposition Technical applications such as adhesion, cleaning, wettability, textile modification, coatings, films, etc. New perspectives are explained about how to use selective and mild processes to allow post-plasma chemistry on non-degraded polymer surfaces. Audience Physicists, polymer chemists, materials scientists, industrial engineers in biomedicine, coatings, printing, etc.