Download Free Plant Water Relations For Sustainable Agriculture Book in PDF and EPUB Free Download. You can read online Plant Water Relations For Sustainable Agriculture and write the review.

Forages: The Science of Grassland Agriculture, 7th Edition, Volume II will extensively evaluate the current knowledge and information on forage agriculture. Chapters written by leading researchers and authorities in grassland agriculture are aggregated under section themes, each one representing a major topic within grassland science and agriculture. This 7th edition will include two new additional chapters covering all aspects of forage physiology in three separate chapters, instead of one in previous editions. Chapters will be updated throughout to include new information that has developed since the last edition. This new edition of the classic reference serves as a comprehensive supplement to An Introduction to Grassland Agriculture, Volume I.
This volume will be the only existing single-authored book offering a science-based breeder’s manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.
Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.
This textbook explains the various aspects of sustainable agricultures to undergraduate and graduate students. The book first quantifies the components of the crop energy balance, i.e. the partitioning of net radiation, and their effect on the thermal environment of the canopy. The soil water balance and the quantification of its main component (evapotranspiration) are studied to determine the availability of water to rain fed crops and to calculate crop water requirements. Then it sets the limitations of crop production in relation to crop phenology, radiation interception and resource availability (e.g. nutrients). With that in mind the different agricultural techniques (sowing, tillage, irrigation, fertilization, harvest, application of pesticides, etc.) are analyzed with special emphasis in quantifying the inputs (sowing rates, fertilizer amounts, irrigation schedules, tillage plans) required for a given target yield under specific environmental conditions (soil & climate). For all techniques strategies are provided for improving the ratio productivity/resource use while ensuring sustainability. The book comes with online practical focusing on the key aspects of management in a crop rotation (collecting weather data, calculating productivity, sowing rates, irrigation programs, fertilizers rates etc).
"The United Nations World Water Development Report", published every three years, is a comprehensive review providing an authoritative picture of the state of the world's freshwater resources. It offers best practices as well as in-depth theoretical analyses to help stimulate ideas and actions for better stewardship in the water sector. It is the only report of its kind, resulting from the collaboration and contributions of the 26 UN agencies, commissions, program, funds, secretariats and conventions that have a significant role in addressing global water concerns.
In the context of improving water productivity, there is a growing interest in deficit irrigation, an irrigation practice whereby water supply is reduced below maximum levels and mild stress is allowed with minimal effects on yield. Under conditions of scarce water supply and drought, deficit irrigation can lead to greater economic gains than maximizing yields per unit of water for a given crop; farmers are more inclined to use water more efficiently, and more water-efficient cash crop selection helps optimize returns. However, this approach requires precise knowledge of crop response to water as drought tolerance varies considerably by species, cultivar and stage of growth. The studies present the latest research concepts and involve various practices for deficit irrigation. Both annual and perennial crops were exposed to different levels of water stress, either during a particular growth phase, throughout the whole growing season or in a combination of growth stages. The overall finding, based on the synthesis of the different contributions, is that deficit or regulated-deficit irrigation can be beneficial where appropriately applied. Substantial savings of water can be achieved with little impact on the quality and quantity of the harvested yield. However, to be successful, an intimate knowledge of crop behavior is required, as crop response to water stress varies considerably.
Continued population growth, rapidly changing consumption patterns and the impacts of climate change and environmental degradation are driving limited resources of food, energy, water and materials towards critical thresholds worldwide. These pressures are likely to be substantial across Africa, where countries will have to find innovative ways to boost crop and livestock production to avoid becoming more reliant on imports and food aid. Sustainable agricultural intensification - producing more output from the same area of land while reducing the negative environmental impacts - represents a solution for millions of African farmers. This volume presents the lessons learned from 40 sustainable agricultural intensification programmes in 20 countries across Africa, commissioned as part of the UK Government's Foresight project. Through detailed case studies, the authors of each chapter examine how to develop productive and sustainable agricultural systems and how to scale up these systems to reach many more millions of people in the future. Themes covered include crop improvements, agroforestry and soil conservation, conservation agriculture, integrated pest management, horticulture, livestock and fodder crops, aquaculture, and novel policies and partnerships.
Water Relations of Plants attempts to explain the importance of water through a description of the factors that control the plant water balance and how they affect the physiological processes that determine the quantity and quality of growth. Organized into 13 chapters, this book first discusses the functions and properties of water and the plant cell water relations. Subsequent chapters focus on measurement and control of soil water, as well as growth and functions of root. This book also looks into the water absorption, the ascent of sap, the transpiration, and the water stress and its effects on plant processes and growth. This book will be useful for students, teachers, and investigators in both basic and applied plant science, as well as for botanists, agronomists, foresters, horticulturists, soil scientists, and even laymen with an interest in plant water relations.