Download Free Plant Virus Evolution Book in PDF and EPUB Free Download. You can read online Plant Virus Evolution and write the review.

This book provides a comprehensive look at the field of plant virus evolution. It is the first book ever published on the topic. Individual chapters, written by experts in the field, cover plant virus ecology, emerging viruses, plant viruses that integrate into the host genome, population biology, evolutionary mechanisms and appropriate methods for analysis. It covers RNA viruses, DNA viruses, pararetroviruses and viroids, and presents a number of thought-provoking ideas.
New viral diseases are emerging continuously. Viruses adapt to new environments at astounding rates. Genetic variability of viruses jeopardizes vaccine efficacy. For many viruses mutants resistant to antiviral agents or host immune responses arise readily, for example, with HIV and influenza. These variations are all of utmost importance for human and animal health as they have prevented us from controlling these epidemic pathogens. This book focuses on the mechanisms that viruses use to evolve, survive and cause disease in their hosts. Covering human, animal, plant and bacterial viruses, it provides both the basic foundations for the evolutionary dynamics of viruses and specific examples of emerging diseases. - NEW - methods to establish relationships among viruses and the mechanisms that affect virus evolution - UNIQUE - combines theoretical concepts in evolution with detailed analyses of the evolution of important virus groups - SPECIFIC - Bacterial, plant, animal and human viruses are compared regarding their interation with their hosts
Plant viruses cause many of the most important diseases threatening crops worldwide. Over the last quarter of a century, an increasing number of plant viruses have emerged in various parts of the world, especially in the tropics and subtropics. As is generally observed for plant viruses, most of the emerging viruses are transmitted horizontally by biological vectors, mainly insects. Reverse genetics using infectious clones--available for many plant viruses--has been used for identification of viral determinants involved in virus-host and virus-vector interactions. Although many studies have identified a number of factors involved in disease development and transmission, the precise mechanisms are unknown for most of the virus-plant-vector combinations. In most cases, the diverse outcomes resulting from virus-virus interactions are poorly understood. Although significant advances have been made towards understand the mechanisms involved in plant resistance to viruses, we are far from being able to apply this knowledge to protect cultivated plants from the all viral threats.The aim of this Special Issue was to provide a platform for researchers interested in plant virology to share their recent results. To achieve this, we invited the plant virology community to submit research articles, short communications and reviews related to the various aspects of plant virology: ecology, virus-plant host interactions, virus-vector interactions, virus-virus interactions, and control strategies. This issue contains some of the best current research in plant virology.
The field of virus evolution has developed during the past three decades, from one considered by many to be esoteric and unimportant for human and agricultural health, to a major driver of our thinking about infectious diseases of plants and animals. The field has been spurred on during the past 30 years by emerging viral diseases such as HIV/AIDS, hantaviruses, SARS, MERS, and Ebola, along with discoveries of the quasispecies nature and potential for rapid evolution and diversification of RNA virus populations. Over time, the focus of research has expanded and developed to encompass a diverse mixture of approaches, from highly theoretical and mechanistic studies of the basic evolutionary mechanisms to detailed research on the molecular host range, as well as virulence changes responsible for emerging viral diseases. This timely book addresses a wide range of current questions and research approaches at the forefront of the field and highlights recent advances in the understanding of the history and mechanisms of virus evolution. Wherever possible, the book's contributors have integrated information from the study of plant, animal, and bacterial viruses. Every effort has been made to unify findings and to highlight the diversity in patterns and modes of virus evolution between systems in order to aid comparative analysis. The book will be essential reading for everyone working on virus evolution and emerging viral diseases. It is also recommended for anyone working in the area of viral pathogenesis. [Subject: Microbiology, Virology, Life Science]
Applied Plant Virology: Advances, Detection, and Antiviral Strategies provides an overview on recent developments and applications in the field of plant virology. The book begins with an introduction to important advances in plant virology, but then covers topics including techniques for assay detection and the diagnosis of plant viruses, the purification, isolation and characterization of plant viruses, the architecture of plant viruses, the replication of plant viruses, the physiology of virus-infected hosts, vectors of plant viruses, and the nomenclature and classification of plants. The book also discusses defense strategies by utilizing antiviral agents and management strategies of virus and viroid diseases. With contributions from an international collection of experts, this book presents a practical resource for plant virologists, plant pathologists, horticulturalists, agronomists, biotechnologists, academics and researchers interested in up-to-date technologies and information that advance the field of plant virology. - Covers the detection, control and management of plant viruses - Discusses antiviral strategies, along with mechanisms of systemic induced resistance to enhance the defense of plants against viruses - Provides contributory chapters from expert plant virologists from different parts of the world
So often new phytopathogens emerge and appear primarily in acute form and then take a chronic form; such populations, however, in general have a limited appearance because of the lack of suitable environmental conditions. The emergence of new pathogens needs to be explored in the light of their evolutionary adaptation. This new volume focuses on the study of quantitative aspects of host-phytopathogen linkages that result in the emergence of aggressive phytopathogens. The book examines the evolution and adaptation of phytopathogens from several cropping systems.
Topics covered in this book include RNA silencing and its suppression in plant virus infection, virus replication mechanisms, the association of cellular membranes with virus replication and movement, plant genetic resistance to viruses, viral cell-to-cell spread, long distance movement in plants, virus induced ER stress, virus diversity and evolution, virus-vector interactions, cross protection, geminiviruses, negative strand RNA viruses, viroids, and the diagnosis of plant viral diseases using next generation sequencing. This book was anticipated to help plant pathologists, scholars, professors, teachers and advanced students in the field with a comprehensive state-of-the-art knowledge of the subject.
This volume of the series The Plant Viruses is devoted to viruses with rod-shaped particles belonging to the following four groups: the toba moviruses (named after tobacco mosaic virus), the tobraviruses (after to bacco rattle), the hordeiviruses (after the latin hordeum in honor of the type member barley stripe mosaic virus), and the not yet officially rec ognized furoviruses (fungus-transmitted rod-shaped viruses, Shirako and Brakke, 1984). At present these clusters of plant viruses are called groups instead of genera or families as is customary in other areas of virology. This pe culiarity of plant viral taxonomy (Matthews, 1982) is due to the fact that the current Plant Virus Subcommittee of the International Committee of Taxonomy of Viruses is deeply split on what to call the categories or ranks used in virus classification. Some plant virologists believe that the species concept cannot be applied to viruses because this concept, according to them, necessarily involves sexual reproduction and genetic isolation (Milne, 1984; Murant, 1985). This belief no doubt stems from the fact that these authors restrict the use of the term species to biological species. According to them, a collection of similar viral isolates and strains does constitute an individ ual virus, i. e. , it is a taxonomy entity separate from other individual viruses.
Two decades ago, recombinant DNA technology or genetic engineering ushered in a new era in the study of plant viruses. The major breakthrough came in the eighties, primarily due to the development of new methods for RNA reverse transcription and cDNA cloning, along with restriction enzyme mapping and rapid nucleotide sequencing. An information explosion in various molecular aspects of plant viruses was caused by these studies. Current research efforts investigate the study of viral genomes, genetic maps, genes and gene expression, gene products, and genetic basis of virus functions and biological properties. Molecular Biology of Plant Viruses analyzes, collates and reviews such published information. Additionally, it demonstrates the mechanisms of genetic variability; brings out the molecular basis of virus transport in plants and of virus transmission by vectors and of disease symptomatology; and discusses molecular biology of viroids and transgenic plants. It also treats the recently discovered genetic phenomenon of gene silencing and the gene-for-gene interactions between the hosts and plant viruses. Molecular Biology of Plant Viruses is an excellent reference, providing insight into the exciting research developments made in the field.