Download Free Plant Tolerance To Individual And Concurrent Stresses Book in PDF and EPUB Free Download. You can read online Plant Tolerance To Individual And Concurrent Stresses and write the review.

This book focuses on multiple plant stresses and the molecular basis of adaptation, addressing the molecular mechanism and adaptation for both abiotic and biotic stresses. Ensuring the yield of crop plants grown under multiple individual and/or combined stresses is essential to sustaining productivity. In this regard, the development of broad-spectrum stress-tolerant plants is important. However, to date information has largely been compiled only on the individual stress tolerance mechanisms, and the mechanisms behind plants’ tolerance to two or more individual or simultaneous stresses are not fully understood. Especially combinatorial stress, a new stress altogether, has only recently been made the object of systematic study. Now several research groups around the world have begun exploring the concurrent stress tolerance mechanisms under both biotic and abiotic stress combinations. This book presents contributions from various experts, highlighting the findings of their multiple individual and concurrent stress tolerance dissection studies.
This book discusses many aspects of plant-nutrient-induced abiotic stress tolerance. It consists of 22 informative chapters on the basic role of plant nutrients and the latest research advances in the field of plant nutrients in abiotic stress tolerance as well as their practical applications. Today, plant nutrients are not only considered as food for plants, but also as regulators of numerous physiological processes including stress tolerance. They also interact with a number of biological molecules and signaling cascades. Although research work and review articles on the role of plant nutrients in abiotic stress tolerance have been published in a range of journals, annual reviews and book chapters, to date there has been no comprehensive book on this topic. As such, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, molecular biologists and environmental scientists.
Abiotic stresses such as drought, flooding, high or low temperatures, metal toxicity and salinity can hamper plant growth and development. Improving Abiotic Stress Tolerance in Plants explains the physiological and molecular mechanisms plants naturally exhibit to withstand abiotic stresses and outlines the potential approaches to enhance plant abiotic stress tolerance to extreme conditions. Synthesising developments in plant stress biology, the book offers strategies that can be used in breeding, genomic, molecular, physiological and biotechnological approaches that hold the potential to develop resilient plants and improve crop productivity worldwide. Features · Comprehensively explains molecular and physiological mechanism of multiple abiotic stress tolerance in plants · Discusses recent advancements in crop abiotic stress tolerance mechanism and highlights strategies to develop abiotic stress tolerant genotypes for sustainability · Stimulates synthesis of information for plant stress biology for biotechnological applications · Presents essential information for large scale breeding and agricultural biotechnological programs for crop improvement Written by a team of expert scientists, this book benefits researchers in the field of plant stress biology and is essential reading for graduate students and researchers generating stress tolerant crops through genetic engineering and plant breeding. It appeals to individuals developing sustainable agriculture through physiological and biotechnological applications.
Agronomic crops have been a source of foods, beverages, fodders, fuels, medicines and industrial raw materials since the dawn of human civilization. Over time, these crops have come to be cultivated using scientific methods instead of traditional methods. However, in the era of climate change, agronomic crops are increasingly subjected to various environmental stresses, which results in substantial yield loss. To meet the food demands of the ever-increasing global population, new technologies and management practices are being adopted to boost yield and maintain productivity under both normal and adverse conditions. To promote the sustainable production of agronomic crops, scientists are currently exploring a range of approaches, which include varietal development, soil management, nutrient and water management, pest management etc. Researchers have also made remarkable progress in developing stress tolerance in crops through various approaches. However, finding solutions to meet the growing food demands remains a challenge. Although there are several research publications on the above-mentioned problems, there are virtually no comprehensive books addressing all of the recent topics. Accordingly, this book, which covers all aspects of production technologies, management practices, and stress tolerance of agronomic crops in a single source, offers a highly topical guide.
Abiotic stress represents the main constraint for agriculture, affecting plant growth and productivity worldwide. Yield losses in agriculture will be potentiated in the future by global warming, increasing contamination, and reduced availability of fertile land. The challenge for agriculture of the present and future is that of increasing the food supply for a continuously growing human population under environmental conditions that are deteriorating in many areas of the world. Minimizing the effects of diverse types of abiotic stresses represents a matter of general concern. Research on all topics related to abiotic stress tolerance, from understanding the stress response mechanisms of plants to developing cultivars and crops tolerant to stress, is a priority. This Special Issue is focused on the physiological and molecular characterization of crop resistance to abiotic stresses, including novel research, reviews, and opinion articles covering all aspects of the responses and mechanisms of plant tolerance to abiotic. Contributions on physiological, biochemical, and molecular studies of crop responses to abiotic stresses; the description and role of stress-responsive genes; marker-assisted screening of stress-tolerant genotypes; genetic engineering; and other biotechnological approaches to improve crop tolerance were considered.
​This book focuses on the existing knowledge regarding the effect of global climate change on tea plant physiology, biochemistry, and metabolism as well as economic and societal aspects of the tea industry. Specifically, this book synthesizes recent advances in the physiological and molecular mechanisms of the responses of tea plants to various abiotic and biotic stressors including high temperature, low temperature or freezing, drought, low light, UV radiation, elevated CO2, ozone, nutrient deficiency, insect herbivory, and pathogenic agents. This book also discusses challenges and potential management strategies for sustaining tea yield and quality in the face of climate change. Dr. Wen-Yan Han is a Professor and Dr. Xin Li is an Associate Professor at the Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRI, CAAS), Hangzhou, PR China. Dr. Golam Jalal Ahammed is an Associate Professor at the Department of Horticulture, College of Forestry, Henan University of Science and Technology, Luoyang, PR China.
Millets are popularly known as “nutri-cereals” due to their high calcium, dietary fiber, polyphenol, vitamins, and protein content. Millet crops have the potential to aid in food security efforts in regions where natural and manmade causes are deteriorating land resources. Nutriomics of Millet Crops emphasizes the importance of nutriomics of millet crops in the context of universal health, highlighting biotechnological advancements offering enrichment of the nutritional value of millets. Millet crops have the potential to be a staple crop, demonstrating an economically feasible approach to combat micronutrient malnutrition. Features: Presents comprehensive studies on health-promoting nutritional components of millets. Provides enumeration on molecular breeding strategies for improvement of millet nutraceuticals. Discusses genomics-assisted breeding for enhancement of nutritional quality in millets. Includes information related to sensory and biofortification of millet-based foods. By assessing the relevance of millets in sustainable global agro-ecosystems due to their nutritional and agronomic attributes, the United Nations celebrated 2023 as the “International Year of Millets.” This book complements this effort and is useful to researchers and policy planners working across the disciplines of plant breeding and food technology. Nutriomics of Millet Crops also encourages young researchers to explore this promising field.
Abiotic stress adversely affects crop production worldwide, decreasing average yields for most of the crops to 50%. Among various abiotic stresses affecting agricultural production, drought stress is considered to be the main source of yield reduction around the globe. Due to an increasing world population, drought stress will lead to a serious food shortage by 2050. The situation may become worse due to predicated global climate change that may multiply the frequency and duration and severity of such abiotic stresses. Hence, there is an urgent need to improve our understanding on complex mechanisms of drought stress tolerance and to develop modern varieties that are more resilient to drought stress. Identification of the potential novel genes responsible for drought tolerance in crop plants will contribute to understanding the molecular mechanism of crop responses to drought stress. The discovery of novel genes, the analysis of their expression patterns in response to drought stress, and the determination of their potential functions in drought stress adaptation will provide the basis of effective engineering strategies to enhance crop drought stress tolerance. Although the in-depth water stress tolerance mechanisms is still unclear, it can be to some extent explained on the basis of ion homeostasis mediated by stress adaptation effectors, toxic radical scavenging, osmolyte biosynthesis, water transport, and long distance signaling response coordination. Importantly, complete elucidation of the physiological, biochemical, and molecular mechanisms for drought stress, perception, transduction, and tolerance is still a challenge to the plant biologists. The findings presented in volume 1 call attention to the physiological and biochemical modalities of drought stress that influence crop productivity, whereas volume 2 summarizes our current understanding on the molecular and genetic mechanisms of drought stress resistance in plants.
Under ongoing climate changes, natural and cultivated habitats of major crops are being continuously disturbed. Such conditions impose and exacerbate abiotic and biotic stressors. Drought, salinity, flood, cold, heat, heavy metals, metalloids, oxidants, irradiation, etc. are important abiotic stressors, while diseases and infections caused by plant pathogens, such as fungal agents, bacteria and viruses, are major biotic stresses. In many instances, stresses have become the major limiting factor for agricultural productivity and exert detrimental role on growth and yield of the crops. To help feed an ever increasing world population and to ensure global food security, concerted efforts from scientists and researchers have identified strategies to manage and mitigate the impacts of climate-induced stresses. This book, summarizing their findings, is aimed at crop improvement beyond such kind of barriers, by agronomic practices (genetics, breeding, phenotyping, etc.) and biotechnological applications, including molecular markers, QTL mapping, genetic engineering, transgenesis, tissue culture, various 'omics' technologies and gene editing. It will cover a wide range of topics under environmental challenges, agronomy and agriculture processes, and biotechnological approaches. Additionally, fundamental mechanisms and applied information on stress responses and tolerance will be discussed. This book highlights problems and offers proper solutions for crop stress management with recent information and up-to-date citations. We believe this book is suitable for scientists, researchers and students working in the fields of agriculture, plant science, environmental biology and biotechnology.