Download Free Plant Secondary Metabolites And Abiotic Stress Book in PDF and EPUB Free Download. You can read online Plant Secondary Metabolites And Abiotic Stress and write the review.

Plant Metabolites and Regulation Under Environmental Stress presents the latest research on both primary and secondary metabolites. The book sheds light on the metabolic pathways of primary and secondary metabolites, the role of these metabolites in plants, and the environmental impact on the regulation of these metabolites. Users will find a comprehensive, practical reference that aids researchers in their understanding of the role of plant metabolites in stress tolerance. - Highlights new advances in the understanding of plant metabolism - Features 17 protocols and methods for analysis of important plant secondary metabolites - Includes sections on environmental adaptations and plant metabolites, plant metabolites and breeding, plant microbiome and metabolites, and plant metabolism under non-stress conditions
Biocontrol and Secondary Metabolites: Applications and Immunization for Plant Growth and Protection covers established and updated research on emerging trends in plant defense signaling in, and during, stress phases. Other topics cover growth at interface as a sustainable way of life and the context of human welfare and conservation of fungi as a group of organisms. Further, the book explores induced systemic resistance using biocontrol agents and/or secondary metabolites as a milestone for sustainable agricultural production, thus providing opportunities for the minimization or elimination of the use of fungicides. - Presents an overview on mechanisms by which plants protect themselves against herbivory and pathogenic microbes - Identifies the use of immunization as a popular and effective alternative to chemical pesticides - Explores how these fungi help crop plants in better uptake of soil nutrients, increase soil fertility, produce growth promoting substances, and secrete metabolites that act as bio-pesticides
Plant secondary metabolites (PSMs) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to provide a synthesis of the function, ecology and evolution of PSMs, revealing our increased awareness of their integrative role in connecting natural systems. It emphasises the multiple roles of secondary metabolites in mediating the interactions between organisms and their environment at a range of scales of ecological organisation, demonstrating how genes encoding for PSM biosynthetic enzymes can have effects from the cellular scale within individual plants all the way to global environmental processes. A range of recent methodological advances, including molecular, transgenic and metabolomic techniques, are illustrated and promising directions for future studies are identified, making this a valuable reference for researchers and graduate students in the field.
The increase in global population, urbanization and industrialization is resulting in the conversion of cultivated land into wasteland. Providing food from these limited resources to an ever-increasing population is one of the biggest challenges that present agriculturalists and plant scientists are facing. Environmental stresses make this situation even graver. Plants on which mankind is directly or indirectly dependent exhibit various mechanisms for their survival. Adaptability of the plants to changing environment is a matter of concern for plant biologists trying to reach the goal of food security. Despite the induction of several tolerance mechanisms, sensitive plants often fail to withstand these environmental extremes. Using new technological approaches has become essential and imperative. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress throws light on the changing environment and the sustainability of plants under these conditions. It contains the most up-to-date research and comprehensive detailed discussions in plant physiology, climate change, agronomy and forestry, sometimes from a molecular point of view, to convey in-depth understanding of the effects of environmental stress in plants, their responses to the environment, how to mitigate the negative effects and improve yield under stress. This edited volume is written by expert plant biologists from around the world, providing invaluable knowledge to graduate and undergraduate students in plant biochemistry, food chemistry, plant physiology, molecular biology, plant biotechnology, and environmental sciences. This book updates scientists and researchers with the very latest information and sustainable methods used for stress tolerance, which will also be of considerable interest to plant based companies and institutions concerned with the campaign of food security.
Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.
Approx.798 pages
This book highlights some of the most important biochemical, physiological and molecular aspects of plant stress, together with the latest updates. It is divided into 14 chapters, written by eminent experts from around the globe and highlighting the effects of plant stress (biotic and abiotic) on the photosynthetic apparatus, metabolites, programmed cell death, germination etc. In turn, the role of beneficial elements, glutathione-S-transferase, phosphite and nitric oxide in the adaptive response of plants under stress and as a stimulator of better plant performance is also discussed. A dedicated chapter addresses research advances in connection with Capsicum, a commercially important plant, and stress tolerance, from classical breeding to the recent use of large-scale transcriptome and genome sequencing technologies. The book also explores the significance of the liliputians of the plant kingdom (Bryophytes) as biomonitors/bioindicators, and general and specialized bioinformatics resources that can benefit anyone working in the field of plant stress biology. Given the information compiled here, the book will offer a valuable guide for students and researchers of plant molecular biology and stress physiology alike.
This book discusses molecular approaches in plant as response to environmental factors, such as variations in temperature, water availability, salinity, and metal stress. The book also covers the impact of increasing global population, urbanization, and industrialization on these molecular behaviors. It covers the natural tolerance mechanism which plants adopt to cope with adverse environments, as well as the novel molecular strategies for engineering the plants in human interest. This book will be of interest to researchers working on the impact of the changing environment on plant ecology, issues of crop yield, and nutrient quantity and quality in agricultural crops. The book will be of interest to researchers as well as policy makers in the environmental and agricultural domains.
Climate change is a complex phenomenon with a wide range of impacts on the environment. Biotic and abiotic stress are a result of climate change. Abiotic stress is caused by primary and secondary stresses which are an impediment to plant productivity. Prolonged exposure to these stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to withstand these stresses, e.g. synthesis of osmolytes, osmoprotectants, and antioxidants. Stress responsive genes and gene products including expressed proteins are implicated in conferring tolerance to the plant. This volume will provide the reader with a wide spectrum of information, including vital references. It also provides information as to how phytoconstituents, hormones and plant associated microbes help the plants to tolerate the stress. This volume also highlights the use of plant resources for ameliorating soil contaminants such as heavy metals. Dr. Parvaiz is Assistant professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad had published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant national Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.
Key features: Serves as a cutting-edge resource for researchers and students who are studying plant abiotic stress tolerance and crop improvement through metabolic adaptations Presents the latest trends and developments in the field of metabolic engineering and abiotic stress tolerance Addresses the adaptation of plants to climatic changes Gives special attention to emerging topics such as the role of secondary metabolites, small RNA mediated regulation and signaling molecule responses to stresses Provides extensive references that serve as entry points for further research Metabolic Adaptations in Plants during Abiotic Stress covers a topic of past, present and future interest for both scientists and policy makers as the global challenge of climate change is addressed. Understanding the mechanisms of plant adaptation to environmental stresses can provide the necessary tools needed to take action to protect them, and hence ourselves. This book brings together recent findings about metabolic adaptations during abiotic stress and in diverse areas of plant adaptation. It covers not only the published results, but also introduces new concepts and findings to offer original views on the perspectives and challenges in this field.