Download Free Plant Secondary Metabolism Engineering Book in PDF and EPUB Free Download. You can read online Plant Secondary Metabolism Engineering and write the review.

Plant secondary metabolism is an economically important source of fine chemicals, such as drugs, insecticides, dyes, flavours, and fragrances. Moreover, important traits of plants such as taste, flavour, smell, colour, or resistance against pests and diseases are also related to secondary metabolites. The genetic modification of plants is feasible nowadays. What does the possibility of engineering plant secondary metabolite pathways mean? In this book, firstly a general introduction is given on plant secondary metabolism, followed by an overview of the possible approaches that could be used to alter secondary metabolite pathways. In a series of chapters from various authorities in the field, an overview is given of the state of the art for important groups of secondary metabolites. No books have been published on this topic so far. This book will thus be a unique source of information for all those involved with plants as chemical factories of fine chemicals and those involved with the quality of food and ornamental plants. It will be useful in teaching graduate courses in the field of metabolic engineering in plants.
This book presents detailed practical information on important methods used in the engineering of plant secondary metabolism pathways and the acquisition of essential knowledge in performing this activity, including important advances and emerging strategies.
The increase in global population, urbanization and industrialization is resulting in the conversion of cultivated land into wasteland. Providing food from these limited resources to an ever-increasing population is one of the biggest challenges that present agriculturalists and plant scientists are facing. Environmental stresses make this situation even graver. Plants on which mankind is directly or indirectly dependent exhibit various mechanisms for their survival. Adaptability of the plants to changing environment is a matter of concern for plant biologists trying to reach the goal of food security. Despite the induction of several tolerance mechanisms, sensitive plants often fail to withstand these environmental extremes. Using new technological approaches has become essential and imperative. Plant-Environment Interaction: Responses and Approaches to Mitigate Stress throws light on the changing environment and the sustainability of plants under these conditions. It contains the most up-to-date research and comprehensive detailed discussions in plant physiology, climate change, agronomy and forestry, sometimes from a molecular point of view, to convey in-depth understanding of the effects of environmental stress in plants, their responses to the environment, how to mitigate the negative effects and improve yield under stress. This edited volume is written by expert plant biologists from around the world, providing invaluable knowledge to graduate and undergraduate students in plant biochemistry, food chemistry, plant physiology, molecular biology, plant biotechnology, and environmental sciences. This book updates scientists and researchers with the very latest information and sustainable methods used for stress tolerance, which will also be of considerable interest to plant based companies and institutions concerned with the campaign of food security.
Written by leading international experts in the field of plant metabolic engineering, this book discusses how the technology can be applied. Applications resulting from metabolic engineering are expected to play a very important role in the future of plant breeding: for example, in the fields of improved resistance or improved traits concerning health promoting constituents, as well as in the production of fine chemicals such as medicines, flavors and fragrances.
This book consists of an introductory overview of secondary metabolites, which are classified into four main sections: microbial secondary metabolites, plant secondary metabolites, secondary metabolites through tissue culture technique, and regulation of secondary metabolite production. This book provides a comprehensive account on the secondary metabolites of microorganisms, plants, and the production of secondary metabolites through biotechnological approach like the plant tissue culture method. The regulatory mechanisms of secondary metabolite production in plants and the pharmaceutical and other applications of various secondary metabolites are also highlighted. This book is considered as necessary reading for microbiologists, biotechnologists, biochemists, pharmacologists, and botanists who are doing research in secondary metabolites. It should also be useful to MSc students, MPhil and PhD scholars, scientists, and faculty members of various science disciplines.
This second edition provides detailed practical information on important methods employed in the engineering of plant secondary metabolism pathways. New and updated chapters guide readers through extraction, quantification, purification, localization, characterization, data mining and processing, biosynthesis modulation, and pathway engineering of representative classes of plant specialized metabolites. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, list of necessary materials and reagents, tips on troubleshooting and known pitfalls, and step-by-step descriptions of readily reproducible protocols. Authoritative and cutting-edge, Plant Secondary Metabolism Engineering: Methods and Protocols, Second Edition aims to be a useful practical guide to help researchers working in this exciting field.
In this book emphasis will be put in the relevance of Plant Biotechnology for producing compounds of pharmaceutical and industrial relevance specifically the contribution of in vitro plant cell cultures for producing recombinant proteins (molecular farming) and compounds produced by plants useful for human and animal health (secondary metabolites) will be discussed. Also the description of some process held by whole plants will be included. The aim will be to provide relevant theoretical frameworks and the latest empirical research findings for professionals and researchers working in the field of Plant Biotechnology, molecular farming and biochemical engineering.
Plant secondary metabolites have been a fertile area of chemical investigation for many years, driving the development of both analytical chemistry and of new synthetic reactions and methodologies. The subject is multi-disciplinary with chemists, biochemists and plant scientists all contributing to our current understanding. In recent years there has been an upsurge in interest from other disciplines, related to the realisation that secondary metabolites are dietary components that may have a considerable impact on human health, and to the development of gene technology that permits modulation of the contents of desirable and undesirable components. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet addresses this wider interest by covering the main groups of natural products from a chemical and biosynthetic perspective with illustrations of how genetic engineering can be applied to manipulate levels of secondary metabolites of economic value as well as those of potential importance in diet and health. These descriptive chapters are augmented by chapters showing where these products are found in the diet, how they are metabolised and reviewing the evidence for their beneficial bioactivity.
The book traces the roots of plant biotechnology from the basic sciences to current applications in the biological and agricultural sciences, industry, and medicine. Providing intriguing opportunities to manipulate plant genetic and metabolic systems, plant biotechnology has now become an exciting area of research. The book vividly describes the processes and methods used to genetically engineer plants for agricultural, environmental and industrial purposes, while also discussing related bioethical and biosafety issues. It also highlights important factors that are often overlooked by methodologies used to develop plants’ tolerance against biotic and abiotic stresses and in the development of special foods, bio-chemicals, and pharmaceuticals. The topics discussed will be of considerable interest to both graduate and postgraduate students. Further, the book offers an ideal reference guide for teachers and researcher alike, bridging the gap between fundamental and advanced approaches.
Plant Secondary Metabolites provides reliable assays to meet the challenge of fulfilling the huge demand for feed. It details plant-animal interactions and presents methodologies that may also be used to determine plant secondary metabolites in human food. In addition, the volume contains methods for analysis of some important plant secondary metabolites, which are written in a recipe-like format designed for direct practical use.