Download Free Plant Root Interaction With Associated Microbiomes To Improve Plant Resiliency And Crop Biodiversity Volume Ii Book in PDF and EPUB Free Download. You can read online Plant Root Interaction With Associated Microbiomes To Improve Plant Resiliency And Crop Biodiversity Volume Ii and write the review.

This edited volume is an inclusive collection of information on crop holobiome, their function and diversity, the plausible role of soil microbes in crop growth, protection from pathogens and stresses, the use of resilient microbiomes for changing climate, and the use of new technologies to study plant-insect-microbe molecular interactions in agricultural systems. Holobiomes provide information about both plants and their microbiomes, which gives a more comprehensive insight, particularly for changing climatic scenarios. By optimizing the crop holobime function crop productivity and plant health can be enhanced manifold. This book deep dives into the numerous ways in which holobiome supports the improving plant health, nutrient uptake, disease control, and stress resistance in major food crops. It helps researchers, academicians, agri-entrepreneurs, and technologists understand the structure and function of holobiomes in crop growth, health, stress tolerance under climatic changes, and holobiome diversity and evolution. The book is also helpful in designing new dimensions in the holobiome research and development of new products and technologies. This volume is of interest and useful to agriculture scientists, microbiologists, ecologists, and is a valuable source of reference to researchers and students.
Relationship Between Microbes and Environment for Sustainable Ecosystem Services, Volume One: Microbial Products for Sustainable Ecosystem Services promotes advances in sustainable solutions, value-added products, and fundamental research in microbes and the environment. Topics include advanced and recent discoveries in the use of microbes for sustainable development. Users will find reference information ranging from the description of various microbial applications for sustainability in different aspects of food, energy, the environment and social development. Volume One includes the direct and indirect role of bacteria, fungi, actinomycetes, viruses, mycoplasma and protozoans in the development of products contributing towards sustainable. The book provides a holistic approach to the most recent advances in the application of various microbes as a biotechnological tool for a vast range of sustainable applications, modern practices, exploring futuristic strategies to harness its full potential. - Covers the latest developments, recent applications and future research avenues in microbial biotechnology for sustainable development - Includes expressive tables and figures with concise information about sustainable ecosystem services - Provides a wide variety of applications and modern practices of harnessing the potential of microbes in the environment
Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. - Demonstrates the impact of climate change on secondary metabolites of plants and potential responses - Incorporates insights on microflora of inhabitant soil - Explores mitigation processes and their modulation by sustainable methods - Highlights the role of microbial technologies in agricultural sustainability
Microbiome Stimulants for Crops: Mechanisms and Applications provides the latest developments in the real-world development and application of these crop management alternatives in a cost-effective, yield protective way. Sections address questions of research, development and application, with insights into recent legislative efforts in Europe and the United States. The book includes valuable information regarding mechanisms and the practical information needed to support the growing microbial inoculant and biostimulant industry, thus helping focus scientific research in new directions. - Provides methods for finding and testing endophytic and growth promotional microbes - Explains the mechanisms of microbes and other biostimulant function in promoting plant growth - Evaluates methods for treatments of plants with microbes and microbiome stimulants - Identifies areas for new research
This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
This book provides a straightforward and easy-to-understand overview of beneficial plant-bacterial interactions. It features a wealth of unique illustrations to clarify the text, and each chapter includes study questions that highlight the important points, as well as references to key experiments. Since the publication of the first edition of Beneficial Plant-Bacterial Interactions, in 2015, there has been an abundance of new discoveries in this area, and in recent years, scientists around the globe have begun to develop a relatively detailed understanding of many of the mechanisms used by bacteria that facilitate plant growth and development. This knowledge is gradually becoming an integral component of modern agricultural practice, with more and more plant growth-promoting bacterial strains being commercialized and used successfully in countries throughout the world. In addition, as the world’s population continues to grow, the pressure for increased food production will intensify, while at the same time, environmental concerns, mean that environmentally friendly methods of food production will need to replace many traditional agricultural practices such as the use of potentially dangerous chemicals. The book, intended for students, explores the fundamentals of this new paradigm in agriculture, horticulture, and environmental cleanup.
The Role of Plant Roots in Crop Production presents the state of knowledge on environmental factors in root growth and development and their effect on the improvement of the yield of annual crops. This book addresses the role of roots in crop production and includes references to numerous annual crops. In addition, it brings together the issues and the state-of-the-art technologies that affect root growth, with comprehensive reviews to facilitate efficient, sustainable, economical, and environmentally responsible crop production. Written for plant scientists, crop scientists, horticulturalists, and soil scientists, plant physiologists, breeders, environmental scientists, agronomists, and undergraduate and graduate students in different disciplines of agricultural science, The Role of Plant Roots in Crop Production: Addresses root architecture and development dynamics to help users improve crop productivity Emphasizes crop production, plant nutrition, and soil chemistry relative to root growth and functions Covers root morphology, root functions, nutrient and water uptake by roots, root-soil interactions, root-environment interactions, root-microbe interactions, physiology of root crops, and management practices to improve root growth Supports content with experimental results, and additional data is presented with pictures Increasing food production worldwide has become a major issue in the 21st century. Stagnation in grain yield of important food crops in recent years in developed, as well as developing, countries has contributed to a sharp increase in food prices. Furthermore, higher grain yield will be needed in the future to feed a burgeoning world population with a rising standard of living that requires more grain per capita. Technologies that enhance productivity, ensure environmental safety, and conserve natural resources are required to meet this challenge.
This volume provides methods, protocols, and reviews that are useful for new and experienced plant microbiome researchers. Chapters guide readers through the investigation of microbiomes associated with seeds, sampling microbiomes from plant compartments and tissues, culture-based methods, culture-independent metabarcoding methods, methods to obtain DNA and perform metabarcoding, protocols to block PCR amplification from the plant host, qPCR-based methods, editing of specific genes in Bacillus genomes, and Streptomycetes and plant microbial indicators. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, The Plant Microbiome: Methods and Protocols aims to ensure successful results in the further study of this vital field.