Download Free Plant Protoplasts And Genetic Engineering V Book in PDF and EPUB Free Download. You can read online Plant Protoplasts And Genetic Engineering V and write the review.

In continuation of Volumes 8, 9, 22, and 23, this new volume deals with the regeneration of plants from isolated protoplasts and genetic transformation in various species of Actinidia, Allocasuarina, Anthurium, Antirrhinum, Asparagus, Beta, Brassica, Carica, Casuarina, Cyphomandra, Eucalyptus, Ipomoea, Larix, Limonium, Liriodendron, Malus, Musa, Physcomitrella, Physalis, Picea, Rosa, Tagetes, Triticum, and Ulmus. These studies reflect the far-reaching implications of protoplast technology in genetic engineering of plants. The book contains a wealth of useful information for advanced students, teachers, and researchers in the field of plant tissue culture, molecular biology, genetic engineering, plant breeding, and general biotechnology.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.
This volume comprising 28 chapters on the in vitro manipulation of plant protoplasts contributed by inter- national experts deals with the isolation, fusion, culture, immobilization, cryopreservation and ultrastructural studies on protoplasts and the regeneration of somatic hybrids and cybrids.
Genetically engineered (GE) crops were first introduced commercially in the 1990s. After two decades of production, some groups and individuals remain critical of the technology based on their concerns about possible adverse effects on human health, the environment, and ethical considerations. At the same time, others are concerned that the technology is not reaching its potential to improve human health and the environment because of stringent regulations and reduced public funding to develop products offering more benefits to society. While the debate about these and other questions related to the genetic engineering techniques of the first 20 years goes on, emerging genetic-engineering technologies are adding new complexities to the conversation. Genetically Engineered Crops builds on previous related Academies reports published between 1987 and 2010 by undertaking a retrospective examination of the purported positive and adverse effects of GE crops and to anticipate what emerging genetic-engineering technologies hold for the future. This report indicates where there are uncertainties about the economic, agronomic, health, safety, or other impacts of GE crops and food, and makes recommendations to fill gaps in safety assessments, increase regulatory clarity, and improve innovations in and access to GE technology.
Twenty-seven chapters deal with the regeneration of plants from protoplasts and genetic transformation in various species of Agrostis, Allium, Anthriscus, Asparagus, Avena, Boehmeria, Carthamus, Coffea, Funaria, Geranium, Ginkgo, Gladiolus, Helianthus, Hordeum, Lilium, Lithospermum, Mentha, Panax, Papaver, Passiflora, Petunia, Physocomitrella, Pinus, Poa, Populus, Rubus, Saintpaulia, and Swertia. These studies reflect the far-reaching implications of protoplast technology in genetic engineering of plants. This volume is of special interest to advanced students, teachers, and research scientists in the field of plant tissue culture, molecular biology, genetic engineering, plant breeding, and general plant biotechnology.
Isolated protoplasts are a unique tool for genetic manipulation of plants. Since the discovery of a method for the enzymatic isolation of pro-· toplasts by Professor E. C. Cocking in 1960, tremendous progress has been made in this very fascinating area of research. I have witnessed the struggle in the 1960's and early 1970's, when obtaining a clean prepara tion of protoplasts was considered an achievement. I also shared the pioneering excitement and enthusiasm in this field during the 2nd Inter national Congress of Plant Tissue Culture held at Strasbourg in 1970, where Dr. I. Thkebe of Japan presented his work on the induction of division in tobacco protoplasts. This was followed by my participation in three international conferences devoted to plant protoplasts held in 1972 in Salamanca (Spain) and Versailles (France), and then in 1975 in Nottingham (England). The enthusiasm shown by plant scientists at these meetings was ample proof of the bright future of protoplast technology, and it became evident that protoplasts would playa major role in plant biotechnology, especially in genetic engineering. Since then we have never looked back, and now the methods for isolation, fusion, and culture, as well as regeneration of somatic hybrids, have become routine laboratory procedures for most plant species. Currently the focus is on cereal and tree protoplasts. In order to bring about any genetic manipulation through fusion, in corporation of DNA, and transformation, the regeneration of the entire plant through manipulation of protoplasts is a prerequisite.
Gene Editing in Plants, Volume 149 aims to provide the reader with an up-to-date survey of cutting-edge research with gene editing tools and an overview of the implications of this research on the nutritional quality of fruits, vegetables and grains. New chapters in the updated volume include topics relating to Genome Engineering and Agriculture: Opportunities and Challenges, the Use of CRISPR/Cas9 for Crop Improvement in Maize and Soybean, the Use of Zinc-Finger Nucleases for Crop Improvement, Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus, and Gene Editing With TALEN and CRISPR/Cas in Rice. This ongoing serial contain contributions from leading scientists and researchers in the field of gene editing in plants who describe the results of their own research in this rapidly expanding area of science. - Shows the importance of revolutionary gene editing technology on plant biology research and its application to agricultural production - Provides insight into what may lie ahead in this rapidly expanding area of plant research and development - Contains contributions from major leaders in the field of plant gene editing
The first compilation of a wealth of knowledge on tobacco BY-2 cells, often cited as the HeLa cell line of higher plants. Basic issues of cell cycle progression, cytokinesis, cell organization and factors that are involved in these processes are covered in detail. Since the tobacco cell line is used as a tool for research in molecular and cellular biology, several chapters on such studies are also included. Further, changes of primary and secondary metabolites during culture and factors that affect these processes are treated. Last but not least, the so far unpublished historical background of the BY-2 cell line is described. This volume is a must for any scientist working in the field of plant biology.