Download Free Plant Phenolics In Biotic Stress Management Book in PDF and EPUB Free Download. You can read online Plant Phenolics In Biotic Stress Management and write the review.

This book presents the latest research on plant phenolics, offering readers a detailed, yet comprehensive account of their role in sustainable agriculture. It covers a diverse range of topics, including extraction processes; the role of plant phenolics in growth and development; plant physiology; post-harvesting technologies; food preservation; environmental, biotic and abiotic stress; as well as nutrition and health. Further the book provides readers with an up-to-date review of this dynamic field and sets the direction for future research. Based on the authors’ extensive experience and written in an engaging style, this highly readable book will appeal to scholars from various disciplines. Bringing together work from leading international researchers, it is also a valuable reference resource for academics, researchers, students and teachers wanting to gain insights into the role of plant phenolics in sustainable agriculture.
Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses
Polyphenols in Plants assists plant scientists and dietary supplement producers in assessing polyphenol content and factors affecting their composition. It also aids in selecting sources and regulating environmental conditions affecting yield for more consistent and function dietary supplements. Polyphenols play key roles in the growth, regulation and structure of plants and vary widely within different plants. Stress, growth conditions and plant species modify polyphenol structure and content. This book describes techniques to identify, isolate and characterize polyphenols, taking mammalian toxicology into account as well. - Defines conditions of growth affecting the polyphenol levels - Describes assay and instrumentation techniques critical to identifying and defining polyphenols, critical to researchers and business development - Documents how some polyphenols are dangerous to consume, important to dietary supplement industry, government regulators and lay public users
This book highlights some of the most important biochemical, physiological and molecular aspects of plant stress, together with the latest updates. It is divided into 14 chapters, written by eminent experts from around the globe and highlighting the effects of plant stress (biotic and abiotic) on the photosynthetic apparatus, metabolites, programmed cell death, germination etc. In turn, the role of beneficial elements, glutathione-S-transferase, phosphite and nitric oxide in the adaptive response of plants under stress and as a stimulator of better plant performance is also discussed. A dedicated chapter addresses research advances in connection with Capsicum, a commercially important plant, and stress tolerance, from classical breeding to the recent use of large-scale transcriptome and genome sequencing technologies. The book also explores the significance of the liliputians of the plant kingdom (Bryophytes) as biomonitors/bioindicators, and general and specialized bioinformatics resources that can benefit anyone working in the field of plant stress biology. Given the information compiled here, the book will offer a valuable guide for students and researchers of plant molecular biology and stress physiology alike.
Emerging Technologies and Management of Crop Stress Tolerance: Volume 1 - Biological Techniques presents the latest technologies used by scientists for improvement the crop production and explores the various roles of these technologies for the enhancement of crop productivity and inhibition of pathogenic bacteria that can cause disease. This resource provides a comprehensive review of how proteomics, genomics, transcriptomics, ionomics, and micromics are a pathway to improve plant stress tolerance to increase productivity and meet the agricultural needs of the growing human population. This valuable resource will help any scientist have a better understanding of environmental stresses to improve resource management within a world of limited resources. - Includes the most recent advances methods and applications of biotechnology to crop science - Discusses different techniques of genomics, proteomics, transcriptomics and nanotechnology - Promotes the prevention of potential diseases to inhibit bacteria postharvest quality of fruits and vegetable crops by advancing application and research - Presents a thorough account of research results and critical reviews
Abiotic Stress and Legumes: Tolerance and Management is the first book to focus on the ability of legume plants to adapt effectively to environmental challenges. Using the -omic approach, this book takes a targeted approach to understanding the methods and means of ensuring survival and maximizing the productivity of the legume plant by improving tolerance to environmental /abiotic stress factors including drought, temperature change, and other challenges. The book presents a comprehensive overview of the progress that has been made in identifying means of managing abiotic stress effects, specifically in legumes, including the development of several varieties which exhibit tolerance through high yield using transcriptomic, proteomic, metabolomic and ionomic approaches. Further, exogenous application of various stimulants such as plant hormones, nutrients, sugars, and polyamines has emerged as an alternative strategy to improve productivity under these environmental challenges. Abiotic Stress and Legumes: Tolerance and Management examines these emerging strategies and serves as an important resource for researchers, academicians and scientists, enhancing their knowledge and aiding further research. - Explores the progress made in managing abiotic stress, specifically with high yield legumes - Highlights the molecular mechanisms related to acclimation - Presents proven strategies and emerging approaches to guide additional research
Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.
Understand the impact of climate change on plant growth with this timely introduction Climate change has had unprecedented consequences for plant metabolism and plant growth. In botany, adverse effects of this kind are called plant stress conditions; in recent years, the plant stress conditions generated by climate change have been the subject of considerable study. Plants have exhibited increased photosynthesis, increased water requirements, and more. There is an urgent need to understand and address these changes as we adapt to drastic changes in the global climate. Global Climate Change and Plant Stress Management presents a comprehensive guide to the effects of global climate change on plants and plant metabolism. It introduces and describes each climate change-related condition and its components, offering a detailed analysis of the resulting stress conditions, the environmental factors which ameliorate or exacerbate them, and possible solutions. The result is a thorough, rigorous introduction to this critical subject for the future of our biome. Readers will also find: Analysis of global climate change impact on various agricultural practices Socio-economic consequences of climate change and plant stress conditions, and possible solutions Strategies for sustainable agriculture Global Climate Change and Plant Stress Management is essential for researchers, scientists, and industry professionals working in the life sciences, as well as for advanced graduate students.
This book will shed light on the effect of salt stress on plants development, proteomics, genomics, genetic engineering, and plant adaptations, among other topics. Understanding the molecular basis will be helpful in developing selection strategies for improving salinity tolerance. The book will cover around 25 chapters with contributors from all over the world.