Download Free Plant Organogenesis Book in PDF and EPUB Free Download. You can read online Plant Organogenesis and write the review.

This Methods in Molecular Biology book covers topics such as how to image the structure of plant ovules and embryos, tools for establishing cell lineages, methods for studying the totipotency of plant cells, fluorescence-activated cell sorting and more."
Organogenesis entails the regulation of cell division, cell expansion, cell and tissue type differentiation, and patterning of the organ as a whole. It is essential to gain insight into how organs are initiated and how they develop. However, this very often is subject to technical difficulties as these processes take place embedded deep in tissues or are difficult to access or visualize. To achieve this, we need specialized techniques such as those concisely illustrated in Plant Organogenesis: Methods and Protocols. Chapters address topics such as how to study and image the structure of ovules and embryos of Arabidopsis thaliana, tools to establish cell lineages in order to visualize the contribution of each cell and cell division to the building of a mature organ, approaches to study the totipotency of several plant cells, techniques such as the use of fluorescence-activated cell sorting (FACS) to analyse transcriptomes and hormone levels in Arabidopsis, methods to investigate organogenesis in economically important crops, and computer-based approaches to bring everything together. Written in the successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Plant Organogenesis: Methods and Protocols serves both professionals and novices with its well-honed methodologies in an effort to further our knowledge of this fascinating research field.
The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.
Plant biotechnology has created unprecedented opportunities for the manipulation of biological systems of plants. To understand biotechnology, it is essential to know the basic aspects of genes and their organization in the genome of plant cells. This text on the subject is aimed at students.
This manual provides all relevant protocols for basic and applied plant cell and molecular technologies, such as histology, electron microscopy, cytology, virus diagnosis, gene transfer and PCR. Also included are chapters on laboratory facilities, operation and management as well as a glossary and all the information needed to set up and carry out any of the procedures without having to use other resource books. It is especially designed for professionals and advanced students who wish to acquire practical skills and first-hand experience in plant biotechnology.
This book presents a detailed analysis of up-to-date literature on in vitro morphogenesis at cell, tissue, organ, and whole plant levels. Its driving force is the substantial advances made in the field of morphogenesis in tissue cultures during the last 25 years.
The way plants grow and develop organs significantly impacts the overall performance and yield of crop plants. The basic knowledge now available in plant development has the potential to help breeders in generating plants with defined architectural features to improve productivity. Plant translational research effort has steadily increased over the last decade due to the huge increase in the availability of crop genomic resources and Arabidopsis-based sequence annotation systems. However, a consistent gap between fundamental and applied science has yet to be filled. One critical point often brought up is the unreadiness of developmental biologists on one side to foresee agricultural applications for their discoveries, and of the breeders to exploit gene function studies to apply to candidate gene approaches when advantageous on the other. In this book, both developmental biologists and breeders make a special effort to reconcile research on the basic principles of plant development and organogenesis with its applications to crop production and genetic improvement. Fundamental and applied science contributions intertwine and chase each other, giving the reader different but complementary perspectives from only apparently distant corners of the same world.
Scientists within the field of plant biotechnology are in a constant search for techniques that can, in the simplest manner possible, answer the genetic and biochemical questions that underlie developmental processes. Thin Cell Layer Culture System not only takes an in-depth look at a technique that has had so much success in attempting, through various practical models and systems, to answer these issues, but also represents a celebration of almost 30 years of research that has covered a massive scope of plant species and areas of study. The initial studies conducted on tobacco thin cell layers (TCLs) - proving that organogenesis can be strictly controlled in vitro - allowed plant research to benefit from this finding, expanding this knowledge in a practical and applied manner into the biotechnological fields of tissue culture and micropropagation, cell and organ genetics and biochemistry. The chapters in this book tell the enigmatic tale of TCLs. An historical perspective opens the scene for an inquiry into the possible cellular, biochemical and genetic processes that allow for the controlled development of a TCL into any organ type. The success of the system is further demonstrated in both monocotyledonous and dicotyledonous species, covering successful organogenesis and in vitro flowering in species within ornamental, leguminous and wood crops, cereals and grasses. Methodologies are outlined in detail, as is the rationale behind the TCL-organogenesis-developmental sequel. The TCL method, shown to be superior to many conventional micropropagation systems, has also shown to be vital in the recovery of transgenic plants. This book is an essential part of every plant, cell and developmental biologist, geneticist and tissue culturalist's shelf as it addresses the primary issue of any plant: the cell, the tissue, and their subsequent development into a highly organized system.
Advances in Plant Tissue Culture: Current Developments and Future Trends provides a complete and up-to-date text on all basic and applied aspects of plant tissue cultures and their latest application implications. It will be beneficial for students and early-career researchers of plant sciences and plant/agricultural biotechnology. Plant tissue culture has emerged as a sustainable way to meet the requirements of fresh produces, horticultural crops, medicinal or ornamental plants. Nowadays, plant tissue culture is an emerging filed applied in various aspects, including sustainable agriculture, plant breeding, horticulture and forestry. This book covers the latest technology, broadly applied for crop improvement, clonal propagation, Somatic hybridization Embryo rescue, Germplasm conservation, genetic conservation, or for the preservation of endangered species. However, these technologies also play a vital role in breaking seed dormancy over conventional methods of conservation. Focuses on plant tissue culture as an emerging field applied in various aspects, including sustainable agriculture, plant breeding, horticulture and forestry Includes current studies and innovations in biotechnology Covers commercialization and current perspectives in the field of plant tissue culture techniques