Download Free Plant Nutrient Acquisition Book in PDF and EPUB Free Download. You can read online Plant Nutrient Acquisition and write the review.

New research reveals that plants actively acquire nutrients; the acquisition process is not a passive one in which plants simply wait for dissolved nutrients to come closer to their roots. In fact plants play a far more active role than once was understood to be possible in nutrient acquisition and in adaptation to problem soils. This book presents an excellent overview and summary of new concepts of plant nutrient acquisition mechanisms, and sets forth their practical implications in crop production. The scope is wide ranging, from biochemical, molecular, and genetic analysis of nutrient acquisition to global nutritional problems. Especially noteworthy are the sections on the cell apoplast, phosphorus-solubilizing organisms, and direct uptake of macro-organic molecules. With contributions by leading scientists worldwide, the book provides an invaluable resource for researchers in plant and environmental sciences and in agronomy and other branches of agriculture.
This is an integrated review of the mechanisms controlling plant nutrient uptake and how plants respond to changes in the environment. Among key topics covered are: soil nutrient bioavailability; root responses to variations in nutrient supply; nitrogen fixation; root architecture; life span; mycorrhizae; responses to climate change. The book helps us understand the mechanisms that govern present-day plant communities and to predict the response of plants to a changing climate.
This book describes the mechanisms of nutrient taken up by plants at the biochemical and molecular level. This is a new concept developed over the past 30 years, primarily due to use of modern technology developed in biotechnological research, instrumentation, modern computation facilities, bioinformatics, the large volumes of information generated by use of various ‘omics’ and of course the dedicated hard work of a large number of researchers. Recent research indicates that nutrient uptake, its transport and redistribution in plants are under genetic control. There are groups of genes for each nutrient that encode transporter proteins whose functions are to acquire the specific nutrient from the soil and transport it across the plasma membrane of the root hair cells for use in plant metabolism. Deficiency or sufficiency of a plant nutrient induces different groups of genes to produce m-RNA transcripts for translation of transporter proteins. A large number of metabolic enzymes are up or down regulated in response to deficiency of plant nutrients. Morphological and metabolic adaptations in order to better acquire nutrients and use them frugally when nutrients are scarce in the growth medium can be observed in plants. Heavy metals, which are toxic to plants, induce different sets of defence mechanisms. In 20 chapters, the book describes plants’ uptake mechanisms for all the major, secondary and micronutrients, beneficial elements and heavy metals. References to research work quoted in the text are updated up to 2014 and included at the end of each chapter. Biotechnological approaches to improving nutrient use efficiency are discussed wherever such information is available. The structure and functions of transporter proteins involved in the uptake of nutrients are discussed. Additional information on some of the specific topics is provided in text boxes or as separate sections within the chapters. Lastly, the terminology used has been explained as far as possible in the text, mostly within parentheses.
Forages: The Science of Grassland Agriculture, 7th Edition, Volume II will extensively evaluate the current knowledge and information on forage agriculture. Chapters written by leading researchers and authorities in grassland agriculture are aggregated under section themes, each one representing a major topic within grassland science and agriculture. This 7th edition will include two new additional chapters covering all aspects of forage physiology in three separate chapters, instead of one in previous editions. Chapters will be updated throughout to include new information that has developed since the last edition. This new edition of the classic reference serves as a comprehensive supplement to An Introduction to Grassland Agriculture, Volume I.
Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.
The burgeoning demand on the world food supply, coupled with concern over the use of chemical fertilizers, has led to an accelerated interest in the practice of precision agriculture. This practice involves the careful control and monitoring of plant nutrition to maximize the rate of growth and yield of crops, as well as their nutritional value.
During the past three decades there has been a large amount of research on biological nitrogen fixation, in part stimulated by increasing world prices of nitrogen-containing fertilizers and environmental concerns. In the last several years, research on plant--microbe interactions, and symbiotic and asymbiotic nitrogen fixation has become truly interdisciplinary in nature, stimulated to some degree by the use of modern genetic techniques. These methodologies have allowed us to make detailed analyses of plant and bacterial genes involved in symbiotic processes and to follow the growth and persistence of the root-nodule bacteria and free-living nitrogen-fixing bacteria in soils. Through the efforts of a large number of researchers we now have a better understanding of the ecology of rhizobia, environmental parameters affecting the infection and nodulation process, the nature of specificity, the biochemistry of host plants and microsymbionts, and chemical signalling between symbiotic partners. This volume gives a summary of current research efforts and knowledge in the field of biological nitrogen fixation. Since the research field is diverse in nature, this book presents a collection of papers in the major research area of physiology and metabolism, genetics, evolution, taxonomy, ecology, and international programs.
The roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil and therefore in plant nutrition. Mycorrhizal Symbiosis is recognized as the definitive work in this area. Since the last edition was published there have been major advances in the field, particularly in the area of molecular biology, and the new edition has been fully revised and updated to incorporate these exciting new developments. - Over 50% new material - Includes expanded color plate section - Covers all aspects of mycorrhiza - Presents new taxonomy - Discusses the impact of proteomics and genomics on research in this area
This book contains the majority of the presentations of the Second International Symposium on the Biology of Root Formation and Development that was hcld in Jerusa lem, Israel, June 23---28, 1996. Following the First Symposium on the Biology of Adventi tious Root Formation, held in Dallas. USA, 1993, we perceived the need to include all kinds of roots, not only the shoot-borne ones. The endogenous signals that control root formation. and the subsequent growth and development processes, are very much alike, re gardless of the sites and sources of origin of the roots. Therefore, we included in the Sec ond Symposium contributions on both shoot-borne (i.e., adventitious) roots and root-borne (i.e., lateral) roots. Plant roots have remained an exciting and an intriguing field of sciencc. During thc years that followed the first symposium, an exceptional proliferation of interest in root biology has developed, associated with the intensive research activity in this field and the contemporary developments in the understanding of root function and development. New methods have been applied, and old ideas and interprctations werc rccxamined. Alto gether, it became necessary to update our viewpoints and to expand them.