Download Free Plant Kinases Book in PDF and EPUB Free Download. You can read online Plant Kinases and write the review.

Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. Recent advances in the areas of molecular biology and biochemistry are presenting new possibilities for reaching an unprecedented depth and a proteome-wide understanding of phosphorylation processes in plants as well as in other species. The major goal of Plant Kinases: Methods and Protocols is to provide the experimentalist with a detailed account of the practical steps necessary for successfully carrying out each protocol in his or her own laboratory. Plant protein kinases specifically addressed in this volume are members of the plant MAP kinase cascade, cyclin- and Calcium-dependent protein kinases, and plant sensor and receptor kinases. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Plant Kinases: Methods and Protocols will prove a useful laboratory companion to both novice and seasoned researchers by facilitating the practical work that will lead them to new and exciting insights in this dynamic field.
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
Plant Receptor-like Kinases: Role in Development and Stress presents the latest research in receptor-like kinases (RLKs), a class of development and defense-response proteins in plants. As one of the largest protein families, with roles ranging from growth and development to stress response, RLKs are involved in every aspect of the plant life cycle, including growth and development, reproduction, and immunity. Development of high throughput sequencing technology has improved the identification and characterization of numerous gene families in plants in the recent years, allowing researchers to identify and characterize numerous RLK sub-families in model plant species and agro-economically important crop plants like rice, wheat, sorghum, tomatoes, and more. This book provides foundational knowledge on the classification of RLKs, their mechanism of action and their roles in the plant life cycle, as well as the most up-to-date advances in the applications of RLKs. It is an essential read for researchers interested in plant signaling and plant genomics. Presents detailed information on receptor like kinases (RLKs), including their mechanism of action and classification Analyzes numerous sub-families of RLKs and their roles in plant development and stress management Highlights the function of RLKs in plant innate immunity
Sequencing projects have revealed the presence of at least several hundred receptor kinases in a typical plant genome. Receptor kinases are therefore the largest family of primary signal transducers in plants, and their abundance suggests an immense signaling network that we have only just begun to uncover. Recent research findings indicate that individual receptor kinases fulfill important roles in growth and development, in the recognition of pathogens and symbionts or, in a few examples, in both growth and defense. This volume will focus on the roles of receptor kinases, their signaling pathways, and the ways in which these important signaling proteins are regulated.
Modification of target protein properties by reversible phosphorylation events has been found to be one of the most prominent cellular control processes in all organisms. Recent advances in the areas of molecular biology and biochemistry are presenting new possibilities for reaching an unprecedented depth and a proteome-wide understanding of phosphorylation processes in plants as well as in other species. The major goal of Plant Kinases: Methods and Protocols is to provide the experimentalist with a detailed account of the practical steps necessary for successfully carrying out each protocol in his or her own laboratory. Plant protein kinases specifically addressed in this volume are members of the plant MAP kinase cascade, cyclin- and Calcium-dependent protein kinases, and plant sensor and receptor kinases. Written in the highly successful Methods in Molecular BiologyTM series format, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and accessible, Plant Kinases: Methods and Protocols will prove a useful laboratory companion to both novice and seasoned researchers by facilitating the practical work that will lead them to new and exciting insights in this dynamic field.
Mitogen-activated protein kinase (MAPK) pathways are modules involved in the transduction of extracellular signals to intracellular targets in all eukaryotes. Distinct MAPK pathways are regulated by different extracellular stimuli and are implicated in a wide variety of biological processes. In plants, there is evidence for MAPKs playing a role in the signaling of abiotic stresses, pathogens, plant hormones, and cell cycle cues. The large number and divergence of plant MAPKs indicates that this ancient mechanism of bioinformatics is extensively used in plants and may provide new molecular hands on old questions.
In recent years, the study of the plant cell cycle has become of major interest, not only to scientists working on cell division sensu strictu , but also to scientists dealing with plant hormones, development and environmental effects on growth. The book The Plant Cell Cycle is a very timely contribution to this exploding field. Outstanding contributors reviewed, not only knowledge on the most important classes of cell cycle regulators, but also summarized the various processes in which cell cycle control plays a pivotal role. The central role of the cell cycle makes this book an absolute must for plant molecular biologists.