Download Free Plant Health Under Biotic Stress Book in PDF and EPUB Free Download. You can read online Plant Health Under Biotic Stress and write the review.

The book illustrates the use of putative microbial agents which provide good protection to the plant from biotic pathogens attack. An up to date knowledge on plant-microbiome interaction strategies in terms of improved sustainability has been discussed. Information from experts across the globe on the application of microbes for providing amicable solution in sustainable agriculture has been gathered. In addition, information related to microbes mediated resistance levels leading to enhanced plant health has been well presented. The chapters have emphasised the use of Plant Growth Promoting Rhizobacteria (PGPR) and other potential biocontrol agents/antagonists in the management of plant diseases which provide extensive information to the readers. Literature on microbial root colonization, plant growth promotions, and also on the protection of plants from attack of various soil borne pathogens have been presented in a coherent way. Information on the application of potential strain of the bio-control fungi, endophytes, actinomycetes strengthening the plants ability which rescue the plant from pathogens attack leading to improved plant health has also been underpinned.
The current scenario of increasing sensitivity towards the sustainable agriculture has given a large space to extensively utilize natural resources that are environmental friendly and are a good replacement of chemicals in agriculture. Application of organic additives in the sustainable disease management can provide new insight in sustenance of plant productivity along with improved host stress tolerance. In the present book we have focussed upon a range of organic strategies to control plant pathogens of wide spectrum in addition to maintaining robust plant health. A detailed account on the application of organic additives has been discussed, irrespective of their origin and nature. In addition, the methods of utilising these organic supplements in the management of plant diseases and promotion of plant yield in more economic way have also been presented with reference to developing, underdeveloped and developed countries. The book has included the works of eminent scholars from across the world thus flashing light on the key literature related to application of organic matters including phytoextracts, chopped leaves, composted organic manures and liquid manures in eco-friendly agriculture. The mechanisms underlying the effectiveness of these organic amendments in promoting plant health has also been presented and discussed in understandable ways.
The current scenario of increasing sensitivity towards the sustainable agriculture has given a large space to extensively utilize natural resources that are environmental friendly and are a good replacement of chemicals in agriculture. Application of organic additives in the sustainable disease management can provide new insight in sustenance of plant productivity along with improved host stress tolerance. In the present book we have focussed upon a range of organic strategies to control plant pathogens of wide spectrum in addition to maintaining robust plant health. A detailed account on the application of organic additives has been discussed, irrespective of their origin and nature. In addition, the methods of utilising these organic supplements in the management of plant diseases and promotion of plant yield in more economic way have also been presented with reference to developing, underdeveloped and developed countries. The book has included the works of eminent scholars from across the world thus flashing light on the key literature related to application of organic matters including phytoextracts, chopped leaves, composted organic manures and liquid manures in eco-friendly agriculture. The mechanisms underlying the effectiveness of these organic amendments in promoting plant health has also been presented and discussed in understandable ways. .
Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems. This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.
This book deals with an array of topics in the broad area of abiotic stress responses in plants focusing “problems and their management” by selecting some of the widely investigated themes. Such as, Cell signalling in Plants during abiotic and biotic stress, Salinity stress induced metabolic changes and its management, High temperature stress: responses, mechanism and management, Low temperature stress induced changes in plants and their management, Biotechnological approaches to improve abiotic stress tolerance, Nutritional poverty in wheat under abiotic stress scenario, Strategies for improving soil health under current climate change scenario, Abiotic stress management in Pulse crops, Mitigation strategies of abiotic stress in fruit crops, Impacts of abiotic stress and possible management option in vegetable crops, and Abiotic stress: impact and management in ornamental crops. This book is useful for under-graduate and post-graduate students in Plant Physiology, Biochemistry, agronomy, horticulture, Botany, Environmental sciences and other cognate disciplines of agriculture and allied sciences and other research workers. We fervently believe that this book will provide good information and understanding of abiotic stress problems and their management in plants. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka. This title is co-published with NIPA.
Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
Plants are subjected to numerous environmental stresses, which can be classified into two broad areas: abiotic and biotic stresses. While the first is considered the damage done to an organism by other living organisms, the latter occurs as a result of a negative impact of non-living factors on the organisms. In this scenario, the current most accepted opinion of scientists is that both biotic and abiotic factors in nature and agroecosystems are affected by climate change, which may lead to significant crop yield decreases worldwide. We should take into consideration not only this environmental concern but also the fact that 20 years from now the earth's population will need 55% more food than it can produce now. Therefore, it is crucial to address such concerns and bring about possible solutions to future plant stress-related outcomes that might affect global agriculture. This book intends to provide the reader with a comprehensive overview of both biotic and abiotic stresses through 10 chapters that include case studies and literature reviews about these topics. There will be a particular focus on understanding the physiological, biochemical, and molecular changes observed in stressed plants as well as the mechanisms underlying stress tolerance in plants.
Molecular Aspects of Plant Beneficial Microbes in Agriculture explores their diverse interactions, including the pathogenic and symbiotic relationship which leads to either a decrease or increase in crop productivity. Focusing on these environmentally-friendly approaches, the book explores their potential in changing climatic conditions. It presents the exploration and regulation of beneficial microbes in offering sustainable and alternative solutions to the use of chemicals in agriculture. The beneficial microbes presented here are capable of contributing to nutrient balance, growth regulators, suppressing pathogens, orchestrating immune response and improving crop performance. The book also offers insights into the advancements in DNA technology and bioinformatic approaches which have provided in-depth knowledge about the molecular arsenal involved in mineral uptake, nitrogen fixation, growth promotion and biocontrol attributes.
This book deals with an array of topics in the broad area of biotic stress responses in plants focusing “problems and their management” by selecting some of the widely investigated themes. Such as, Major insect-pest of cereal crops in India and their management, Biotic stresses of major pulse crops and their management strategies, Insect pest of oilseed crops and their management, Biotic stresses of vegetable crops & their management, Insect pests infesting major vegetable crops and their management strategies, Fruit Crops Insect pests and their Biointensive Integrated Pest Management techniques, Mass Trapping of fruit flies using Methyl Eugenol based Traps, Organic means of combating biotic stresses in plants, Nematode problem in pulses and their management, and approaches in pest management of stored grain pests. This book is useful for under-graduate and post-graduate students in Entomology, Plant Pathology, Agronomy, Horticulture, other cognate disciplines of agriculture and allied sciences and other research workers. We fervently believe that this book will provide good information and understanding of biotic stress problems and their management in plants.
Find out more about convenient immunoassays you can implement in your own research! From the Foreword, by M. S. Swaminathan, Chairman of the M. S. Swaminathan Research Foundation: “The book provides remedies to the common maladies relating to quality and safety of dietary material. Professor Narayanasamy has compiled and presented with great clarity the latest information on all aspects relating to immunology in plant health and food safety. We owe Professor Narayanasamy a deep debt of gratitude for this labor of love in the cause of improving food and feed quality and safety.” Immunology in Plant Health and Its Impact on Food Safety suggests cost-effective, simple, and sensitive immunological techniques to assess plant health and food safety for the production of desirable foods, feeds, and timbers. This book explores the structure and biochemical constituents of healthy plants and the abiotic and biotic stresses that can cause a marked reduction in quantity and quality of agricultural produce. Researchers, faculty members, and graduate scholars in plant pathology, microbiology, biochemistry, environmental sciences, and food technology will find this text useful for producing healthy plants while maintaining a pollution-free environment. In Immunology in Plant Health and Its Impact on Food Safety, methods to develop stress-resistant cultivars are discussed to enable you to select the most suitable strategies for maintaining production and quality without the use of chemicals. This valuable resource provides detailed instructions for employing immunoassays that are rapid, reproducible, and amenable for large-scale application in place of cumbersome and expensive methods currently in use. With this important tool, you will be able to plan and develop programs to obtain agricultural produce of high quality acceptable for human and animal consumption. With Immunology in Plant Health and Its Impact on Food Safety, you’ll learn more about: agrosystems immunological reactions preparations of antisera immunodetection techniques plant-stress interactions genetic manipulations disease resistance and the production of disease-free plants mycotoxins chemical residues This essential guide provides you with access to a wide spectrum of information never before encompassed in a single book, saving you time and energy. Figures, photographs, and tables with appropriate data supply visual and factual support for the points discussed in the text. Immunology in Plant Health and Its Impact on Food Safety includes a large number of citations (over 1000) for further research and development in your chosen field of study.