Download Free Plant Growth Promoting Microorganisms Book in PDF and EPUB Free Download. You can read online Plant Growth Promoting Microorganisms and write the review.

To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.
Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems. This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.
Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology explores PGPMs (actinomycetes, bacteria, fungi and cyanobacteria) and their multidimensional roles in agriculture, including their increasing applications in sustainable agriculture. In addition to their traditional understanding and applications in agriculture, PGPMs are increasingly known as a source of nano-particles production that are gaining significant interest in their ability to provide more economically, environmentally friendly and safe technologies to crop growers. The book considers new concepts and current developments in plant growth, thus promoting microorganisms research and evaluating its implications for sustainable productivity. Users will find this to be an invaluable resource for researchers in applied microbial biotechnology, soil science, nano-technology of microbial strains, and industry personnel in these areas. - Presents basic and applied aspects of sustainable agriculture, including nano-technology in sustainable agriculture - Identifies molecular tools/omics approaches for enhancing plant growth promoting microorganisms - Discusses plant growth promoting microorganisms in bioactive compounds production, and as a source of nano-particles
This book describes the various applications of microorganisms in improving plant growth, health and the efficiency of phytochemical production. The chapters trace topics such as the role of PGPRs in improving salt stress and heavy metal tolerance in plants; the prevention and control of plant diseases; boosting soil fertility and agriculture productivity; the induction of secondary metabolite biosynthesis in medicinal and aromatic plants; the enhancement of phytochemical levels, and the action mechanisms, diversity and characterization of PGPRs. The reviews will be of interest for scientists in the fields of agriculture, microbiology, soil biology, plant breeding and herbal medicinal products.
This volume is envisioned as a resource for researchers working with beneficial and harmful groups of bacteria associated with crop plants. The book is divided into two parts, with Part I on beneficial bacteria including chapters on symbiotic nitrogen fixers and rhizosphere bacteria. The second part consists of detailed descriptions of 8 genera of plant pathogenic bacteria, including Agrobacterium and Herbaspirillum. Each chapter covers terminology, molecular phylogeny and more. soft-rot, Pseudomonas, Xanthomonas, Ralstonia, Burkholderia and Acidovorax There is an opening chapter on the plant-associated bacteria survey, molecular phylogeny, genomics and recent advances. And each chapter includes terminology/definitions, molecular phylogeny, methods that can be used (both traditional and latest molecular tools) and applications
Plant growth promoting microorganisms (PGPM) have gained acceptance and importance due to their dual benefits of promoting plant growth in addition to managing plant pests and diseases and are extensively used as microbial inoculants in improving agricultural productivity. Use of PGPM mixtures and their integration with other means, like host resistance and chemicals, has proven to be more useful in management of several disease problems. Successful greenhouse and field demonstrations have been done using PGPM for growth promotion and resistance induction in various crops, against a broad spectrum of pathogens. Practical use of PGPM-based products has advanced and many formulations are made available in commercial scale, and more are currently under development. Further, novel formulation technologies have been formulated. Microorganisms constitute the major players in the rhizosphere and their composition and biomass significantly alters the plants response to the environment. Composition and interaction of rhizomicroflora with its surroundings highly influences plant health and productivity. Such beneficial rhizo-ecosystems engineering and manipulation of the rhizosphere to exploit or enhance this innate genetic potential, which will most probably play a key role in the future development of sustainable agricultural processes, is also reviewed. In recent years, a substantial amount of work has been done in the area of PGPM and voluminous literature is available. This book presents a methodical, comprehensive and latest research survey in this area. An overview of the scale and impact of PGPM in plant growth promotion and management of crop diseases, focusing attention on details most relevant to the development and application of biological control strategies involving various microbial strains is discussed. Problems and prospects of commercialisation, advantages and disadvantages of their use and their potential for integrated pest management are also outlined. Most of the available books either refer to the subject of plant growth promoting fungi or plant growth promoting bacteria, however, this comprehensive book includes research pertaining to all beneficial microorganisms that are plant growth promoting in nature. Moreover, this is a rapidly developing field of research and has global impact. Therefore, keeping in pace with the latest developments in this area is totally necessary, and this book will be a latest and up-to-date compilation of the research from different parts of the world.
Sustainable increase in agricultural production while keeping the environmental quality, agro-ecosystem function and biodiversity is a real challenge in current agricultural practices. Application of PGPR can help in meeting the expected demand for increasing agricultural productivity to feed the world’s booming population. Global concern over the demerits of chemicals in agriculture has diverted the attention of researchers towards sustainable agriculture by utilizing the potential of Plant Growth Promoting Rhizobacteria (PGPR). Use of PGPR as biofertilizers, biopesticides, soil, and plant health managers has gained considerable agricultural and commercial significance. The book Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture has contributions in the form of book chapter from 25 eminent global researchers, that discusses about the PGPRs and their role in growth promotion of various crop plants, suppression of wide range of phytopathogens, their formulation, effect of various factors on growth and performance of PGPR, assessment of diversity of PGPR through microsatellites and role of PGPR in mitigating biotic and abiotic stress.This book will be helpful for students, teachers, researchers, and entrepreneurs involved in PGPR and allied fields. The book will be highly useful to researchers, teachers, students, entrepreneurs, and policymakers.
Plant Metal Interaction: Emerging Remediation Techniques covers different heavy metals and their effect on soils and plants, along with the remediation techniques currently available. As cultivable land is declining day-by-day as a result of increased metals in our soil and water, there is an urgent need to remediate these effects. This multi-contributed book is divided into four sections covering the whole of plant metal interactions, including heavy metals, approaches to alleviate heavy metal stress, microbial approaches to remove heavy metals, and phytoremediation. - Provides an overview of the effect of different heavy metals on growth, biochemical reactions, and physiology of various plants - Serves as a reference guide for available techniques, challenges, and possible solutions in heavy metal remediation - Covers sustainable technologies in uptake and removal of heavy metals
Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR as bioinoculants can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to provide effective bioinoculants, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
Over the last few decades, the prevalence of studies about plant growth has dramatically grown in most regions of the world. Many aspects have been investigated related to this phenomenon. If we can gain understanding of how plants grow, then we may be able to manipulate it to reduce both chemical fertilizer use and its environmental impact without decreasing the yield. This book provides information about the use of bio-agents, plant health, plant pathogen, property of melanin, and the influence of rootstock and root growth. We hope this information will be useful for all the people who work with this hot topic.