Download Free Plant Growth Promoting Actinobacteria Book in PDF and EPUB Free Download. You can read online Plant Growth Promoting Actinobacteria and write the review.

Global yields of legumes have been relatively stagnant for the last five decades, despite the adoption of conventional and molecular breeding approaches. The use of plant growth-promoting (PGP) bacteria for improving agricultural production, soil and plant health has become one of the most attractive strategies for developing sustainable agriculture. Actinomycetes are bacteria that play an important role in PGP and plant protection, produce secondary metabolites of commercial interest, and their use is well documented in wheat, rice, beans, chickpeas and peas. In order to promote legumes, the general assembly of the UN recently declared 2016 the “International Year of Pulses.” In view of this development, this book illustrates how PGP actinomycetes can improve grain yield and soil fertility, improve control of insect pests and phytopathogens, and enhance host-plant resistance. It also addresses special topics of current interest, e.g. the role of PGP actinomycetes in the biofortification of legume seeds and bioremediation of heavy metals.
Global yields of legumes have been relatively stagnant for the last five decades, despite the adoption of conventional and molecular breeding approaches. The use of plant growth-promoting (PGP) bacteria for improving agricultural production, soil and plant health has become one of the most attractive strategies for developing sustainable agriculture. Actinomycetes are bacteria that play an important role in PGP and plant protection, produce secondary metabolites of commercial interest, and their use is well documented in wheat, rice, beans, chickpeas and peas. In order to promote legumes, the general assembly of the UN recently declared 2016 the “International Year of Pulses.” In view of this development, this book illustrates how PGP actinomycetes can improve grain yield and soil fertility, improve control of insect pests and phytopathogens, and enhance host-plant resistance. It also addresses special topics of current interest, e.g. the role of PGP actinomycetes in the biofortification of legume seeds and bioremediation of heavy metals.
Global yields of legumes have been relatively stagnant for the last five decades, despite the adoption of conventional and molecular breeding approaches. The use of plant growth-promoting (PGP) bacteria for improving agricultural production, soil and plant health has become one of the most attractive strategies for developing sustainable agriculture. Actinomycetes are bacteria that play an important role in PGP and plant protection, produce secondary metabolites of commercial interest, and their use is well documented in wheat, rice, beans, chickpeas and peas. In order to promote legumes, the general assembly of the UN recently declared 2016 the “International Year of Pulses.” In view of this development, this book illustrates how PGP actinomycetes can improve grain yield and soil fertility, improve control of insect pests and phytopathogens, and enhance host-plant resistance. It also addresses special topics of current interest, e.g. the role of PGP actinomycetes in the biofortification of legume seeds and bioremediation of heavy metals.
To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.
Sustainable increase in agricultural production while keeping the environmental quality, agro-ecosystem function and biodiversity is a real challenge in current agricultural practices. Application of PGPR can help in meeting the expected demand for increasing agricultural productivity to feed the world’s booming population. Global concern over the demerits of chemicals in agriculture has diverted the attention of researchers towards sustainable agriculture by utilizing the potential of Plant Growth Promoting Rhizobacteria (PGPR). Use of PGPR as biofertilizers, biopesticides, soil, and plant health managers has gained considerable agricultural and commercial significance. The book Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture has contributions in the form of book chapter from 25 eminent global researchers, that discusses about the PGPRs and their role in growth promotion of various crop plants, suppression of wide range of phytopathogens, their formulation, effect of various factors on growth and performance of PGPR, assessment of diversity of PGPR through microsatellites and role of PGPR in mitigating biotic and abiotic stress.This book will be helpful for students, teachers, researchers, and entrepreneurs involved in PGPR and allied fields. The book will be highly useful to researchers, teachers, students, entrepreneurs, and policymakers.
This edited book aims to focus on microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The book explains ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Diversity and functional redundancy of these associated PGPM make them very active in supporting plant improvement, health and resistance to drought, salt and other stresses, and these dimensions will be explored in this book. Implementing proper biotechnological applications of the arid and desert-adapted PGPM constitutes a sizeable challenge, and the book attempts to take up that challenge and help researchers in this field to gain a detailed understanding of PGPM from arid ecosystems. This book serves as a handbook for research workers, teachers, postgraduate students and extension personnel, other development workers, and policy planners engaged in arid zone development.
This book presents an introductory overview of Actinobacteria with three main divisions: taxonomic principles, bioprospecting, and agriculture and industrial utility, which covers isolation, cultivation methods, and identification of Actinobacteria and production and biotechnological potential of antibacterial compounds and enzymes from Actinobacteria. Moreover, this book also provides a comprehensive account on plant growth-promoting (PGP) and pollutant degrading ability of Actinobacteria and the exploitation of Actinobacteria as ecofriendly nanofactories for biosynthesis of nanoparticles, such as gold and silver. This book will be beneficial for the graduate students, teachers, researchers, biotechnologists, and other professionals, who are interested to fortify and expand their knowledge about Actinobacteria in the field of Microbiology, Biotechnology, Biomedical Science, Plant Science, Agriculture, Plant pathology, Environmental Science, etc.
Currently, agriculture is at a crossroads similar to that experienced at the beginning of the last century. The growing need to supply food to global markets and the incipient climate is expected to jeopardize the current agricultural systems. This situation requires a rethinking of agricultural production systems, and it is clearly necessary to incorporate new tools and agronomic practices that improve efficiency and sustainability. A key factor can be identified in using resources or the competition of crops to resist biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) are of outstanding utility due to the multiple mechanisms with which they influence plant development. It is fundamental, at these crossroads, to delve deeper into the mechanisms by which PGPB can improve the development of plants in the soil at the phenotypic level. Biochemical methods, incorporating genomic, transcriptomic, proteomic, and metabolomic analyses, can help us understand these interactions. In addition, omics techniques will make it possible to create a complete and complex vision using big data technologies, spurring new strategies to achieve an agriculture with a greater degree of integration of the environment, and greater efficiency of production with reduced risk to human.
Actinobacteria commonly inhabit the rhizosphere, being an essential part of this environment due to their interactions with plants. Such interactions have made possible to characterize them as plant growth-promoting rhizobacteria (PGPR). As PGPR, they possess direct or indirect mechanisms that favor plant growth. Actinobacteria improve the availability of nutrients and minerals, synthesized plant growth regulators, and specially, they are capable of inhibiting phytopathogens. Different activities that are performed by actinobacteria have been studied, such as phosphate solubilization, siderophores production, and nitrogen fixation. Furthermore, actinobacteria do not contaminate the environment; instead, they help to maintain the biotic equilibrium of soil by cooperating with nutrients cycling. The aforementioned is directly related to the quality and productivity of crops. Moreover, different aspects of these microorganisms have been studied, such as production of metabolites that improve plant growth, resilience against unfavorable environmental conditions, and beneficial and synergic interactions with arbuscular mycorrhizal fungi. Taking into account the above-mentioned activities, actinobacteria can be considered as possible plant fertilizers.