Download Free Plant Genotyping Book in PDF and EPUB Free Download. You can read online Plant Genotyping and write the review.

The ability to produce vast amounts of DNA sequence data has enabled the discovery of molecular markers in model organisms, crops, as well as orphan species making genotyping the rate limiting factor, and this volume focuses on the different markers available and the low to high throughput genotyping of these markers. Given the diverse nature of some of these systems, an overview is provided on the identification of markers from sequence data, as well as data analysis with example applications once the genotyping data has been generated. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Plant Genotyping: Methods and Protocols is aimed at plant molecular biologists, geneticists, plant breeders and ecologists who have a target question and need to know the most suitable markers and genotyping system to use.
This thorough volume presents a wide range of existing methods, from the very popular to the more exotic, in the area of plant genotyping. Many methods of plant genotyping were initially developed for medical research, but all genotyping methods, if they are to be successful, should be suitable for application across the full range of studies within plant biology, as seen in this collection. Plant genotyping methods herein are based on a variety of assessments, including DNA microarray, with its hundreds of thousands of simultaneous reactions, or separate individual studies of DNA sequencing and fragment analysis, PCR and qPCR, allele-specific molecular probes and primers, digestion with restriction endonucleases, microscopy and many others. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Genotyping: Methods and Protocols offers researchers the opportunity to update their knowledge and choose the most suitable method of plant genotyping for their chosen application.
Plant genotyping, or DNA fingerprinting of plants, is a technology that has matured and is poised for widespread practical application in the fields of breeding, commerce and research. This book examines the technologies available and their application in the analysis of:Wild plant populationsGermplasm collections Plant breedingContributors include leading research workers in this field from North America, Europe and Australasia.
Describes some of the developments in the field of Plant Genotyping, focusing on single nucleotide polymorphism (SNPs). This book covers the discovery, analysis and uses of SNPs, and examines other approaches to plant genotyping.
OGENOTYPING BY SEQUENCING FOR CROP IMPROVEMENT A thoroughly up-to-date exploration of genotyping-by-sequencing technologies and related methods in plant science In Genotyping by Sequencing for Crop Improvement, a team of distinguished researchers delivers an in-depth and current exploration of the latest advances in genotyping-by-sequencing (GBS) methods, the statistical approaches used to analyze GBS data, and its applications, including quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS) in crop improvement. This edited volume includes insightful contributions on a variety of relevant topics, like advanced molecular markers, high-throughput genotyping platforms, whole genome resequencing, QTL mapping with advanced mapping populations, analytical pipelines for GBS analysis, and more. The distinguished contributors explore traditional and advanced markers used in plant genotyping in extensive detail, and advanced genotyping platforms that cater to unique research purposes are discussed, as is the whole-genome resequencing (WGR) methodology. The included chapters also examine the applications of these technologies in several different crop categories, including cereals, pulses, oilseeds, and commercial crops. Genotyping by Sequencing for Crop Improvement also offers: A thorough introduction to molecular marker techniques and recent advancements in the technology Comprehensive explorations of the genotyping of seeds while preserving their viability, as well as advances in genomic selection Practical discussions of opportunities and challenges relating to high throughput genotyping in polyploid crops In-depth examinations of recent advances and applications of GBS, GWAS, and GS in cereals, pulses, oilseeds, millets, and commercial crops Perfect for practicing plant scientists with an interest in genotyping-by-sequencing technology, Genotyping by Sequencing for Crop Improvement will also earn a place in the libraries of researchers and students seeking a one-stop reference on the foundational aspects of – and recent advances in – genotyping-by-sequencing, genome-wide association studies, and genomic selection.
In contrast to the external traits of plants, we cannot directly see the genotypes that comprise the underlying set of genetic material encoding these phenotypic traits. To make genotypes accessible for research and further understanding, various genotyping methods are used. Plant genotyping began with relatively simple and elementary molecular markers, like microsatellites or SSR (Simple Sequence Repeats), which were then followed by DNA sequencing and fragment analysis, PCR and qPCR, allele-specific molecular probes and primers, and now today’s modern and advanced microchip-DNA technology involving hundreds and thousands of reactions simultaneously.
This book fills the gap between textbooks of quantitative genetic theory, and software manuals that provide details on analytical methods but little context or perspective on which methods may be most appropriate for a particular application. Accordingly this book is composed of two sections. The first section (Chapters 1 to 8) covers topics of classical phenotypic data analysis for prediction of breeding values in animal and plant breeding programs. In the second section (Chapters 9 to 13) we provide the concept and overall review of available tools for using DNA markers for predictions of genetic merits in breeding populations. With advances in DNA sequencing technologies, genomic data, especially single nucleotide polymorphism (SNP) markers, have become available for animal and plant breeding programs in recent years. Analysis of DNA markers for prediction of genetic merit is a relatively new and active research area. The algorithms and software to implement these algorithms are changing rapidly. This section represents state-of-the-art knowledge on the tools and technologies available for genetic analysis of plants and animals. However, readers should be aware that the methods or statistical packages covered here may not be available or they might be out of date in a few years. Ultimately the book is intended for professional breeders interested in utilizing these tools and approaches in their breeding programs. Lastly, we anticipate the usage of this volume for advanced level graduate courses in agricultural and breeding courses.
Our lives and well being intimately depend on the exploitation of the plant genetic resources available to our breeding programs. Therefore, more extensive exploration and effective exploitation of plant genetic resources are essential prerequisites for the release of improved cultivars. Accordingly, the remarkable progress in genomics approaches and more recently in sequencing and bioinformatics offers unprecedented opportunities for mining germplasm collections, mapping and cloning loci of interest, identifying novel alleles and deploying them for breeding purposes. This book collects 48 highly interdisciplinary articles describing how genomics improves our capacity to characterize and harness natural and artificially induced variation in order to boost crop productivity and provide consumers with high-quality food. This book will be an invaluable reference for all those interested in managing, mining and harnessing the genetic richness of plant genetic resources.
Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.