Download Free Plant Adaptations To Phosphate Deficiency Book in PDF and EPUB Free Download. You can read online Plant Adaptations To Phosphate Deficiency and write the review.

Phosphate is an essential mineral to all plants, and its availability in soils is an increasing challenge for agriculture. Phosphate is abundant in soils but its biological availability is often low due to the complexes that it forms with soil minerals and compounds. The biological availability of Phosphate is further reduced in acidic soils, which represent approximately 40% of earth’s arable agricultural lands. Agricultural systems compensate Phosphate deficiency with fertilizers coming from the mining of rock phosphate, which is estimated to exhaust within the next 50 years. For these reasons, Phosphate limitations in natural and agricultural ecosystems is going to become a global problem, and we urgently need to better understand how plants respond to Phosphate deficiency.
Phosphorus (P) is an essential macronutrient for plant growth. It is as phosphate that plants take up P from the soil solution. Since little phosphate is available to plants in most soils, plants have evolved a range of mechanisms to acquire and use P efficiently – including the development of symbiotic relationships that help them access sources of phosphorus beyond the plant’s own range. At the same time, in agricultural systems, applications of inorganic phosphate fertilizers aimed at overcoming phosphate limitation are unsustainable and can cause pollution. This latest volume in Springer’s Plant Ecophysiology series takes an in-depth look at these diverse plant-phosphorus interactions in natural and agricultural environments, presenting a series of critical reviews on the current status of research. In particular, the book presents a wealth of information on the genetic and phenotypic variation in natural plant ecosystems adapted to low P availability, which could be of particular relevance to developing new crop varieties with enhanced abilities to grow under P-limiting conditions. The book provides a valuable reference material for graduates and research scientists working in the field of plant-phosphorus interactions, as well as for those working in plant breeding and sustainable agricultural development.
This book discusses many aspects of plant-nutrient-induced abiotic stress tolerance. It consists of 22 informative chapters on the basic role of plant nutrients and the latest research advances in the field of plant nutrients in abiotic stress tolerance as well as their practical applications. Today, plant nutrients are not only considered as food for plants, but also as regulators of numerous physiological processes including stress tolerance. They also interact with a number of biological molecules and signaling cascades. Although research work and review articles on the role of plant nutrients in abiotic stress tolerance have been published in a range of journals, annual reviews and book chapters, to date there has been no comprehensive book on this topic. As such, this timely book is a valuable resource for a wide audience, including plant scientists, agronomists, soil scientists, botanists, molecular biologists and environmental scientists.
​Plant signalling has emerged as an integrated field which has become indispensable in recent times to study any biological process. Over the last decade, an enormous amount of information has been generated in this field and the advances in information technology gave birth to bioinformatics which has helped greatly in managing the galaxy of information. It is now possible to view the different information’s in a systems biology approach which has unravelled the association/ new processes and thus helped us enormously in understanding of the biological processes. The present book is an attempt at understanding the plant signalling processes with different perspectives. Even though the plants are sessile but there exists a tremendous interconnected network of perception at morphological, physiological and molecular levels. The impact of the surrounding environment in terms of abiotic and biotic stresses is significant in terms of its survival, adaptation and productivity for the human welfare. The plants possess a wide array of processes at the organ, tissue and cellular levels which are governed by a plethora of molecules. The molecules govern individual processes and these exists a cross talk between them to form a complex network of processes. The book tries to envision how different processes are operating at different points in the life cycle of the plant.
Long-awaited second edition of classic textbook, brought completely up to date, for courses on tropical soils, and reference for scientists and professionals.
Accompanying CD-ROM includes 600 figures, tables and color plates from the book Plants in action which can be used for the production of color transparencies or for projections in lectures.
Potassium (K+) is the most abundant ion in the plant cell, and is required for a wide array of functions, ranging from the maintenance of electrical potential gradients across cell membranes, to the generation of turgor, to the activation of numerous enzymes. The majority of these functions depends more or less directly upon the activities and regulation of membrane-bound K+ transport proteins, operating over a wide range of K+ concentrations. Here, we review the physiological aspects of potassium transport systems in the plasma membrane, re-examining fundamental problems in the field such as the distinctions between high- and low-affinity transport systems, the regulation of cellular K+ pools, and the generation of electrical potentials, placing these discussions in the context of recent discoveries in the molecular biology of K+ transport.
The rhizosphere, the soil volume, which is directly affected by root activity, is an important hot spot for a multitude of biotic and abiotic processes. Carbon transfer from plants to microorganisms and to soil takes place in these small volumes around living roots, creating chemical gradients and zones of microbial activity over distinct temporal and spatial scales. Hydraulic and biogeochemical properties of the rhizosphere and the formation of complex three-dimensional structures such as micro- and macroaggreates in turn, result from complex feedbacks between physical, chemical and biological processes. The aim of this Research Topic is to advance our understanding of rhizosphere interactions by collating 16 original contributions across disciplines, including original research, reviews and specific methods on the processes taking place in the rhizosphere, to shed new light on one of the most important interfaces for the diversity of life on earth.
The burgeoning demand on the world food supply, coupled with concern over the use of chemical fertilizers, has led to an accelerated interest in the practice of precision agriculture. This practice involves the careful control and monitoring of plant nutrition to maximize the rate of growth and yield of crops, as well as their nutritional value.