Download Free Planning For Us Fusion Community Participation In The Iter Program Book in PDF and EPUB Free Download. You can read online Planning For Us Fusion Community Participation In The Iter Program and write the review.

ITER presents the United States and its international partners with the opportunity to explore new and exciting frontiers of plasma science while bringing the promise of fusion energy closer to reality. The ITER project has garnered the commitment and will draw on the scientific potential of seven international partners, China, the European Union, India, Japan, the Republic of Korea, Russia, and the United States, countries that represent more than half of the world's population. The success of ITER will depend on each partner's ability to fully engage itself in the scientific and technological challenges posed by advancing our understanding of fusion. In this book, the National Research Council assesses the current U.S. Department of Energy (DOE) plan for U.S. fusion community participation in ITER, evaluates the plan's elements, and recommends appropriate goals, procedures, and metrics for consideration in the future development of the plan.
In January 2003, President George W. Bush announced that the United States would begin negotiations to join the ITER project and noted that "if successful, ITER would create the first fusion device capable of producing thermal energy comparable to the output of a power plant, making commercially viable fusion power available as soon as 2050." The United States and the other ITER members are now constructing ITER with the aim to demonstrate that magnetically confined plasmas can produce more fusion power than the power needed to sustain the plasma. This is a critical step towards producing and delivering electricity from fusion energy. Since the international establishment of the ITER project, ITER's construction schedule has slipped and ITER's costs have increased significantly, leading to questions about whether the United States should continue its commitment to participate in ITER. This study will advise how to best advance the fusion energy sciences in the United States given developments in the field, the specific international investments in fusion science and technology, and the priorities for the next ten years developed by the community and the Office of Fusion Energy Sciences (FES) that were recently reported to Congress. It will address the scientific justification and needs for strengthening the foundations for realizing fusion energy given a potential choice of U.S. participation or not in the ITER project, and develops future scenarios in either case. This interim report assesses the current status of U.S. fusion research and of the importance of burning plasma research to the development of fusion energy as well as to plasma science and other science and engineering disciplines. The final report will present strategies that incorporate continued progress toward a burning plasma experiment and a focus on innovation.
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.
Fusion offers the prospect of virtually unlimited energy. The United States and many nations around the world have made enormous progress toward achieving fusion energy. With ITER scheduled to go online within a decade and demonstrate controlled fusion ten years later, now is the right time for the United States to develop plans to benefit from its investment in burning plasma research and take steps to develop fusion electricity for the nation's future energy needs. At the request of the Department of Energy, the National Academies of Sciences, Engineering, and Medicine organized a committee to develop a strategic plan for U.S. fusion research. The final report's two main recommendations are: (1) The United States should remain an ITER partner as the most cost-effective way to gain experience with a burning plasma at the scale of a power plant. (2) The United States should start a national program of accompanying research and technology leading to the construction of a compact pilot plant that produces electricity from fusion at the lowest possible capital cost.
Fusion energy offers the prospect of addressing the nation's energy needs and contributing to the transition to a low-carbon emission electrical generation infrastructure. Technology and research results from U.S. investments in the major fusion burning plasma experiment known as ITER, coupled with a strong foundation of research funded by the Department of Energy (DOE), position the United States to begin planning for its first fusion pilot plant. Strong interest from the private sector is an additional motivating factor, as the process of decarbonizing and modernizing the nation's electric infrastructure accelerates and companies seek to lead the way. At the request of DOE, Bringing Fusion to the U.S. Grid builds upon the work of the 2019 report Final Report of the Committee on a Strategic Plan for U.S. Burning Plasma Research to identify the key goals and innovations - independent of confinement concept - that are needed to support the development of a U.S. fusion pilot plant that can serve as a model for producing electricity at the lowest possible capital cost.