Download Free Planification De Taches De Manipulation Pour Robots Paralleles A Cables Book in PDF and EPUB Free Download. You can read online Planification De Taches De Manipulation Pour Robots Paralleles A Cables and write the review.

Les robots parallèles à câbles présentent l'intérêt d'un grand espace de travail comparativement à des robots manipulateurs classiques. En contrepartie, la présence des câbles induit des collisions possibles supplémentaires, et des contraintes de positivité sur les tensions des câbles. La plateforme logicielle HPP développée dans l'équipe GEPETTO du LAAS permet de planifier des mouvements et des tâches de manipulation pour des systèmes articulés dans des environnements encombrés par des obstacles.Le travail réalisé au cours de cette thèse a permis d'appliquer les algorithmes existant dans la plateforme HPP aux robots parallèles à câbles. Le travail de recherche de cette thèse apporte des solutions au problème de validation continue de trajectoires pour les robots parallèles à câbles. Dans un premier temps, un algorithme de validation continue de collision est étendu pour prendre en compte toutes les paires de collisions contenant des câbles. Cet algorithme se base sur le calcul d'un majorant de la vitesse relative de deux corps afin de valider successivement des portions du chemin. Dans un deuxième temps, ce même algorithme de validation continue est étendu afin de valider les conditions de tensions des câbles.Ensemble, la validation continue de collision et la validation continue de tensions forment une méthode de validation continue globale pour robots parallèles à câbles. Cette méthode est utilisée au sein d'algorithmes de planification probabilistespour effectuer de la planification de mouvement pour robots à câbles. Des scénarios représentant des tâches de logistiques ou des tâches industrielles sont testés en simulation ainsi qu'en réel sur le robot CoGiRo.
Parallel robots are closed-loop mechanisms presenting very good performances in terms of accuracy, rigidity and ability to manipulate large loads. Parallel robots have been used in a large number of applications ranging from astronomy to flight simulators and are becoming increasingly popular in the field of machine-tool industry. This book presents a complete synthesis of the latest results on the possible mechanical architectures, analysis and synthesis of this type of mechanism. It is intended to be used by students (with over 100 exercises and numerous Internet addresses), researchers (with over 500 references and anonymous ftp access to the code of some algorithms presented in this book) and engineers (for which practical results and applications are presented).
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.
There are many applications of computer animation and simulation where it is necessary to model virtual crowds of autonomous agents. Some of these applications include site planning, education, entertainment, training, and human factors analysis for building evacuation. Other applications include simulations of scenarios where masses of people gather, flow, and disperse, such as transportation centers, sporting events, and concerts. Most crowd simulations include only basic locomotive behaviors possibly coupled with a few stochastic actions. Our goal in this survey is to establish a baseline of techniques and requirements for simulating large-scale virtual human populations. Sometimes, these populations might be mutually engaged in a common activity such as evacuation from a building or area; other times they may be going about their individual and personal agenda of work, play, leisure, travel, or spectator. Computational methods to model one set of requirements may not mesh well with good approaches to another. By including both crowd and individual goals and constraints into a comprehensive computational model, we expect to simulate the visual texture and contextual behaviors of groups of seemingly sentient beings. Table of Contents: Introduction / Crowd Simulation Methodology Survey / Individual Differences in Crowds / Framework (HiDAC + MACES + CAROSA) / HiDAC: Local Motion / MACES: Wayfinding with Communication and Roles / CAROSA: Functional Crowds / Initializing a Scenario / Evaluating Crowds
The enormous practical need for solving global optimization problems coupled with a rapidly advancing computer technology has allowed one to consider problems which a few years ago would have been considered computationally intractable. As a consequence, we are seeing the creation of a large and increasing number of diverse algorithms for solving a wide variety of multiextremal global optimization problems. The goal of this book is to systematically clarify and unify these diverse approaches in order to provide insight into the underlying concepts and their pro perties. Aside from a coherent view of the field much new material is presented. By definition, a multiextremal global optimization problem seeks at least one global minimizer of a real-valued objective function that possesses different local n minimizers. The feasible set of points in IR is usually determined by a system of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.
There is already a wealth of literature covering cumulative trauma disorders and medical management, as well as the biomechanics of manual material handling and lower back problems. However, despite a spike in the number of work-related musculoskeletal disorders (WRMSDs) in the upper limbs-due to a sharp increase in the amount of computer-related j
This book includes the thoroughly refereed post-conference proceedings of the 14th RoboCup International Symposium, held in Singapore, in June, 2010 - representing the scientific tracks structured in four sessions entitled simulation and rescue robots; robot perception and localization; robot motion and humanoid robots; and human robot interaction and semantic scene analysis. The 20 revised full papers and 16 revised short papers presented were carefully reviewed and selected from 78 submissions. Documenting the research advances of the RoboCup community since the predecessor symposium, this book constitutes a valuable source of reference and inspiration for R&D professionals interested in RoboCup or in robotics and distributed AI more generally.
The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired control algorithms for bipedal walking Generation and deformation of natural walking in computer graphics Imitation of human motions on humanoids Emotional body language during walking Simulation of biologically inspired actuators for bipedal walking machines Modeling and simulation techniques for the development of prostheses Functional electrical stimulation of walking.