Download Free Planetary Landers And Entry Probes Book in PDF and EPUB Free Download. You can read online Planetary Landers And Entry Probes and write the review.

This is a concise, broad overview of the engineering, science and history of planetary landers and atmospheric entry probes designed to explore the atmospheres and surfaces of other planets. This will form an important reference for professionals, researchers and graduate students in planetary science, aerospace engineering and space mission development.
This book provides a concise but broad overview of the engineering, science and flight history of planetary landers and atmospheric entry probes designed to explore the atmospheres and surfaces of other planets. It covers engineering aspects specific to such vehicles which are not usually treated in traditional spacecraft engineering texts. Examples are drawn from over thirty different lander and entry probe designs that have been used for lunar and planetary missions since the early 1960s. The authors provide detailed illustrations of many vehicle designs from different international space programs, and give basic information on their missions and payloads, irrespective of the mission's success or failure. Several missions are discussed in more detail to demonstrate the broad range of the challenges involved and the solutions implemented. This will form an important reference for professionals, academic researchers and graduate students involved in planetary science, aerospace engineering and space mission development.
Perminov was the leading designer for Mars and Venus spacecraft at the Soviet Lavochkin design bureau in the early days of Martian exploration. In addition to competing with the U.S. to get to the Moon, the Soviets also struggled to beat the U.S. to Mars during the Cold War. Throughout the 1960s and 1970s, the Soviets attempted to send a number of robotic probes to Mars, but for a variety of reasons, most of these missions ended in failure. Despite these overall failures, the Soviets garnered a great deal of scientific and technical knowledge through these efforts. This monograph tells some fascinating, but little-known, stories.
This is a completely updated and revised version of a monograph published in 2002 by the NASA History Office under the original title Deep Space Chronicle: A Chronology of Deep Space and Planetary Probes, 1958-2000. This new edition not only adds all events in robotic deep space exploration after 2000 and up to the end of 2016, but it also completely corrects and updates all accounts of missions from 1958 to 2000--Provided by publisher.
The objective of this book is to introduce the surface of the objects in the Solar System, the individual treatment features of the planets and satellites in the context of varies among the chapters. For example, it was difficult geomorphic processes. Introductory chapters include the to decide what to leave out of the chapter on Mars because "bows" and "whys" of Solar System exploration and a so much is known about the surface, whereas data are review of the primary processes that shape our planet, rather limited for Mercury. Earth, and which appear to be important to planetary In addition to introducing the geomorphology of plane sciences. The remaining chapters describe the geomor tary objects, this book is intended to be a "source" for phology of the planets and satellites for which data are obtaining supplemental information. References are cited available. For most of these objects, the general physiog throughout the text. However, these citations are not raphy and terrain units for each are introduced, then the intended to be exhaustive but rather are given to provide geomorphic processes that are inferred for the develop a "springboard" for additional literature surveys.
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
One of the most fundamental discoveries of the solar system was the detection of four moons in orbit around Jupiter by Galileo Galilei in 1610. The discovery was significant not only in the context of Jupiter; it gave credence to and was instrumental in firmly establishing the heliocentric system of Nicolaus Copernicus. Almost four centuries after Galileo's discovery, exten sive observations by the two Voyager spacecrafts have once again revolu tionized our thinking about the major planets, their composition, structure, origin, and evolution. This book is an attempt at summarizing our present understanding of the atmospheres and ionospheres in the outer solar system, with particular emphasis on the relevant physics and chemistry. I was motivat ed to prepare this manuscript for the following reasons. First, after under going rapid expansion in the recent past, the subject has finally attained suf ficient maturity to warrant a monograph of its own. Second, I have felt that as a result of recent observations, new and challenging problems have arisen whose resolution requires unconventional analysis and theoretical interpreta tion of existing data, as well as the collection of new kinds of data. I believe the time is ripe to put these issues in the appropriate scientific perspective, with the hope of stimulating novel theoretical, observational, and laboratory studies. I have highlighted the significant scientific problems throughout the book, especially at the end of each chapter.