Download Free Planar Lipid Bilayers Blms And Their Applications Book in PDF and EPUB Free Download. You can read online Planar Lipid Bilayers Blms And Their Applications and write the review.

The lipid bilayer is the most basic structural element of cell membranes. A wide range of topics are covered in this volume, from the origin of the lipid bilayer concept, to current applications and experimental techniques. Each chapter in this volume is self-contained and describes a group's research, providing detailed methodology and key references useful for researchers. Lipid bilayer research is of great interest to many because of it's interdisciplinary nature.·Provides an overview of decades of research on the lipid bilayer·38 contributed chapters, by leading scientists, cover a wide range of topics in one authoritative volume·Book coincides with 40th anniversary of BLM
The lipid bilayer is central to life, as all living organisms possess a lipid bilayer structure, thereby underlying the lipid bilayer principle of biomembranes. The lipid bilayer principle and its applications are the main theme of this new book series. This new series on bilayer lipid membranes (BLMs and liposomes) include invited chapters on a broad range of topics, from theoretical investigations, specific studies, experimental methods, to practical applications. Written for newcomers, experienced scientists, and those who are not familiar with these specific research areas, the Series covers all aspects of lipid bilayer investigations, both fundamental and applied. * Covers a broad range of topics ranging from theoretical research, specific studies, experimental methods, to practical applications * Authoritative timely reviews by experts in this field * Indispensable source of information for new scientists
The lipid bilayer is central to life, as all living organisms possess a lipid bilayer structure, thereby underlying the lipid bilayer principle of biomembranes. The lipid bilayer principle and its applications are the main theme of this new book series.This new series on bilayer lipid membranes (BLMs and liposomes) include invited chapters on a broad range of topics, from theoretical investigations, specific studies, experimental methods, to practical applications. Written for newcomers, experienced scientists, and those who are not familiar with these specific research areas, the Series covers all aspects of lipid bilayer investigations, both fundamental and applied.* Covers a broad range of topics ranging from theoretical research, specific studies, experimental methods, to practical applications* Authoritative timely reviews by experts in this field* Indispensable source of information for new scientists
Advances in Planar Lipid Bilayers and Liposomes, Volume 11, includes invited chapters on a broad range of topics, covering both of the main arrangements of the reconstituted system, namely planar lipid bilayers and spherical liposomes. The invited authors present the latest results of their own research groups in this exciting multidisciplinary field. This volume addresses the broader goal with both systems, planar lipid bilayers and spherical liposomes, which is the further development of this interdisciplinary field worldwide. - Incorporates contributions from newcomers and established and experienced researchers - Explores the planar lipid bilayer systems and spherical liposomes from both theoretical and experimental perspectives - Serves as an indispensable source of information for new scientists
This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. Recent advances in developing biomimetic membranes for technological applications will be presented with focus on the use of integral membrane protein mediated transport for sensing and separation. It describes the fundamentals of biosensing as well as separation and shows how the two processes are working in a cooperative manner in biological systems. Biomimetics is a truly cross-disciplinary approach and this is exemplified using the process of forward osmosis will be presented as an illustration of how advances in membrane technology may be directly stimulated by an increased understanding of biological membrane transport. In the development of a biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to water, electrolytes, and non-electrolytes. These non-protein mediated membrane transport contributions will be presented and the implications for biomimetic device construction will be discussed. New developments in our understanding of the reciprocal coupling between the material properties of the biomimetic matrix and the embedded proteins will be presented and strategies for inducing biomimetic matrix stability will be discussed. Once reconstituted in its final host biomimetic matrix the protein stability also needs to be maintained and controlled. Beta-barrel proteins exemplified by the E. Coli outer membrane channels or small peptides are inherently more stable than alpha-helical bundle proteins which may require additional stabilizing modifications. The challenges associated with insertion and stabilization of alpha-helical bundle proteins including many carriers and ligand and voltage gated ion (and water) channels will be discussed and exemplified using the aquaporin protein. Many biomimetic membrane applications require that the final device can be used in the macroscopic realm. Thus a biomimetic separation device must have the ability to process hundred of liters of permeate in hours – effectively demanding square-meter size membranes. Scalability is a general issue for all nano-inspired technology developments and will be addressed here in the context biomimetic membrane array fabrication. Finally a robust working biomimetic device based on membrane transport must be encapsulated and protected yet allowing massive transport though the encapsulation material. This challenge will be discussed using microfluidic design strategies as examples of how to use microfluidic systems to create and encapsulate biomimetic membranes. The book provides an overview of what is known in the field, where additional research is needed, and where the field is heading.
Advances in Biomembranes and Lipid Self-Assembly, Volume 27, formerly titled Advances in Planar Lipid Bilayers and Liposomes, provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes, and lipid self-assemblies from the micro- to the nanoscale. The assortment of chapters in this volume represents both original research and comprehensive reviews written by world leading experts and young researchers, with topics of note in this release including TiO2 Nanomaterials as Electrochemical Biosensors for Cancer, the Reconstitution of Ion Channels in Planar Lipid Bilayers: New Approaches, and Shear-Induced Lamellar/Onion Transition in Surfactant Systems. - Surveys recent theoretical and experimental results on lipid micro- and nanostructures - Presents potential uses of applications, like clinically relevant diagnostic and therapeutic procedures, biotechnology, pharmaceutical engineering and food products - Includes both original research and comprehensive reviews written by world leading experts and young researchers - Provides a global platform for a broad community of experimental and theoretical researchers studying cell membranes, lipid model membranes and lipid self-assemblies, from micro to nanoscale
In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.
This book arises from the NATO Advanced Study Institute “Technological Innovations in Detection and Sensing of CBRN Agents and Ecological Terrorism” held in Chisinau, Republic of Moldova in June 2010. It comprises a variety of invited contributions by highly experienced educators, scientists, and industrialists, and is structured to cover important aspects of the field that include developments in chemical-biological, and radiation sensing, synthesis and processing of sensors, and applications of sensors in detecting/monitoring contaminants introduced/dispersed inadvertently or intentionally in air, water, and food supplies. The book emphasizes nanomaterials and nanotechnology based sensing and also includes a section on sensing and detection technologies that can be applied to information security. Finally, it examines regional, national, and international policies and ethics related to nanomaterials and sensing. It will be of considerable interest and value to those already pursuing or considering careers in the field of nanostructured materials and nanotechnology based sensing, In general, it serves as a valuable source of information for those interested in how nanomaterials and nanotechnologies are advancing the field of sensing, detection, and remediation, policy makers, and commanders in the field.