Download Free Pincer Compounds Book in PDF and EPUB Free Download. You can read online Pincer Compounds and write the review.

Pincer Compounds: Chemistry and Applications offers valuable state-of-the-art coverage highlighting highly active areas of research—from mechanistic work to synthesis and characterization. The book focuses on small molecule activation chemistry (particularly H2 and hydrogenation), earth abundant metals (such as Fe), actinides, carbene-pincers, chiral catalysis, and alternative solvent usage. The book covers the current state of the field, featuring chapters from renowned contributors, covering four continents and ranging from still-active pioneers to new names emerging as creative strong contributors to this fascinating and promising area. Over a decade since the publication of Morales-Morales and Jensen's The Chemistry of Pincer Compounds (Elsevier 2007), research in this unique area has flourished, finding a plethora of applications in almost every single branch of chemistry—from their traditional application as very robust and active catalysts all the way to potential biological and pharmaceutical applications. - Describes the chemistry and applications of this important class of organometallic and coordination compounds - Includes contributions from global leaders in the field, featuring pioneers in the area as well as emerging experts conducting exciting research on pincer complexes - Highlights areas of promising and active research, including small molecule activation, earth abundant metals, and actinide chemistry
Pincer complexes are formed by the binding of a chemical structure to a metal atom with at least one carbon-metal bond. Usually the metal atom has three bonds to a chemical backbone, enclosing the atom like a pincer. The resulting structure protects the metal atom and gives it unique properties.The last decade has witnessed the continuous growth in the development of pincer complexes. These species have passed from being curiosity compounds to chemical chameleons able to perform a wide variety of applications. Their unique metal bound structures provide some of the most active catalysts yet known for organic transformations involving the activation of bonds. The Chemistry of Pincer Compounds details use of pincer compounds including homogeneous catalysis, enantioselective organic transformations, the activation of strong bonds, the biological importance of pincer compounds as potential therapeutic or pharmaceutical agents, dendrimeric and supported materials.* Describes the chemistry and applications of this important class of organometallic and coordination compounds* Covers the areas in which pincer complexes have had an impact* Includes information on more recent and interesting pincer compounds not just those that are well-known
Pincer-Metal Complexes: Applications in Catalytic Dehydrogenation Chemistry provides an overview of pincer-metal catalytic systems that transform hydrocarbons and their derivatives from an synthetic and mechanistic point-of-view. This book provides thorough coverage of the operating mechanisms and dehydrogenation catalyst compatibility in both functionalized and unfunctionalized hydrocarbon systems. In addition, it includes success stories of pincer-metal systems, as well as current and future challenges. The book is an ideal reference for researchers practicing synthetic organic chemistry, inorganic chemistry, organometallic chemistry and catalysis in academia and industry. In recent years there has been a surge in the research on hydrocarbon dehydrogenation catalytic systems that are compatible with polar substituents. This helps facilitate formulation of tandem processes that are not limited to hydrocarbon transformation but also to hydrocarbon functionalization in a single pot. - Covers applications of pincer-metal complexes in organic transformations - Includes pincer-group 8 and 9 metal complexes for alkane dehydrogenations - Features a discussion of pincer-metal complexes for the dehydrogenation of functionalized hydrocarbons and electro-catalytic transformations
Advances in Organometallic Chemistry, Volume 73, the latest release in this longstanding serial, is known for its comprehensive coverage of topics in organometallic synthesis, reactions, mechanisms, homogeneous catalysis, and more. It is ideal for a wide range of researchers involved in organometallic chemistry, including synthetic protocols, mechanistic studies and practical applications. Specific chapters in this new release include Metal carbonyl promoted multicomponent coupling of alkyne for synthesis of heterocyclic compounds, Group 10 metal(0) complexes stabilized by phosphorus and carbon donor ligands, Synthesis of Nitrogen-containing Molecules via Transition Metal-Catalyzed Reactions on Isoxazoles, Anthraniils and Benzoisoxazoles, and more. - Contains contributions from leading authorities in the field of organometallic chemistry - Covers topics in organometallic synthesis, reactions, mechanisms, homogeneous catalysis, and more - Informs and updates readers on the latest developments in the field - Carefully edited to provide easy-to-read material
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
Gerard van Koten: The Mono-anionic ECE-Pincer Ligand - a Versatile Privileged Ligand Platform: General Considerations.- Elena Poverenov, David Milstein: Non-Innocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes.- Dean M. Roddick: Tuning of PCP Pincer Ligand Electronic and Steric Properties.- Gemma R. Freeman, J. A. Gareth Williams: Metal Complexes of Pincer Ligands: Excited States, Photochemistry, and Luminescence.- Davit Zargarian, Annie Castonguay, Denis M. Spasyuk: ECE-Type Pincer Complexes of Nickel.- Roman Jambor and Libor Dostál: The Chemistry of Pincer Complexes of 13 - 15 Main Group Elements.- Kálmán J. Szabo: Pincer Complexes as Catalysts in Organic Chemistry.- Jun-ichi Ito and Hisao Nishiyama: Optically Active Bis(oxazolinyl)phenyl Metal Complexes as Multi-potent Catalysts.- Anthony St. John, Karen I. Goldberg, and D. Michael Heinekey: Pincer Complexes as Catalysts for Amine Borane Dehydrogenation.- Dmitri Gelman and Ronit Romm: PC(sp3)P Transition Metal Pincer Complexes: Properties and Catalytic Applications.- Jennifer Hawk and Steve Craig: Physical Applications of Pincer Complexes.
Transition-Metal-Catalyzed C-H Functionalization of Heterocycles A comprehensive guide to recent advances in this field Constituting the majority of all known compounds, heterocycles are structures that incorporate one or more heteroatoms within their core, thus exhibiting properties that are quite different from their all-carbon analogs. They are fundamental to all fields of chemistry and, therefore, their synthesis and modification has attracted a great deal of attention in the recent years. In this vein, transition-metal-catalyzed C-H bond functionalization forms a crucial tool for generating and analyzing heterocyclic compounds. Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume Set, showcases diverse C-H functionalization methodologies and their incorporation into the latest research. The chapters serve as an essential tool depicting detailed site-selective functionalization of heterocyclic cores, along with a comprehensive discussion on their mechanistic approaches. Readers of Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set will also find: A detailed introduction to C-H activation along with the mechanistic aspects of transition-metal-catalyzed C-H bond activation reactions Easy-to-use structures with each chapter dedicated to a type of heterocycle and its specific functionalization methodologies A leading team of international authors in C-H bond functionalization Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set is a valuable guide for students and researchers in organic synthesis and process development, in both academic and industrial contexts.
This book provides a review of cyclometalation reactions and organometallic intramolecular-coordination five-membered ring products, the most active type of reactions in synthetic organic reactions and their products. Included is the discovery of intramolecular-coordination bonds in cyclometalation reactions and the characteristics of those reactions, as well as the reasons that their five-membered ring compounds are very easily synthesized through such reactions. In addition, the applications of cyclometalation reactions and five-membered ring products, synthetic applications, catalysts, and other products are described. These topics are of special interest for industrial researchers.
Comprehensively covering modern carbonylation chemistry, this book is an indispensable companion for all synthetic chemists working in industry and academia. This monograph contains everything there is to know from recent advances in the investigation of carbonylation catalysts, via coordination chemistry to the synthetic application of transition metal catalyzed carbonylations.
Organic Materials as Smart Nanocarriers for Drug Delivery presents the latest developments in the area of organic frameworks used in pharmaceutical nanotechnology. An up-to-date overview of organic smart nanocarriers is explored, along with the different types of nanocarriers, including polymeric micelles, cyclodextrins, hydrogels, lipid nanoparticles and nanoemlusions. Written by a diverse range of international academics, this book is a valuable reference for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of organic smart nanocarriers. - Explores the most recent molecular- and structure-based applications of organic smart nanocarriers in drug delivery - Highlights different smart nanocarriers and assesses their intricate organic structural properties for improving drug delivery - Assesses how molecular organic frameworks lead to more effective drug delivery systems