Download Free Pilot Scale In Situ Remediation Of Chlorinated Solvents In Groundwater Using Vitamin B12 Book in PDF and EPUB Free Download. You can read online Pilot Scale In Situ Remediation Of Chlorinated Solvents In Groundwater Using Vitamin B12 and write the review.

In the late 1970s and early 1980s, our nation began to grapple with the legacy of past disposal practices for toxic chemicals. With the passage in 1980 of the Comprehensive Envir- mental Response, Compensation, and Liability Act (CERCLA), commonly known as Sup- fund, it became the law of the land to remediate these sites. The U. S. Department of Defense (DoD), the nation’s largest industrial organization, also recognized that it too had a legacy of contaminated sites. Historic operations at Army, Navy, Air Force, and Marine Corps facilities, ranges, manufacturing sites, shipyards, and depots had resulted in widespread contamination of soil, groundwater, and sediment. While Superfund began in 1980 to focus on remediation of heavily contaminated sites largely abandoned or neglected by the private sector, the DoD had already initiated its Installation Restoration Program in the mid-1970s. In 1984, the DoD began the Defense Environmental Restoration Program (DERP) for contaminated site assessment and remediation. Two years later, the U. S. Congress codified the DERP and directed the Secretary of Defense to carry out a concurrent program of research, development, and demonstration of innovative remediation technologies. As chronicled in the 1994 National Research Council report, “Ranking Hazardous-Waste Sites for Remedial Action,” our early estimates on the cost and suitability of existing techn- ogies for cleaning up contaminated sites were wildly optimistic. Original estimates, in 1980, projected an average Superfund cleanup cost of a mere $3.
Approximately 85% of the hazardous waste sites in the United States have contaminated ground water. The conventional approach for remediating contaminated ground water has been to extract the contaminated water, treat it above ground, and reinject or discharge the clean water ("pump- and-treat"). The recovered contaminants must be disposed of separately. It is becoming increasingly apparent that pump-and-treat technologies require considerable investment over extended period of time, and often times do not actually clean up the source of the contamination. Current policies and law stress "permanent" remedies over containment. Consequently, there is considerable interest and effort being expended on alternative, innovative treatment technologies for contaminated ground water. This report is one in a series that document recent pilot demonstrations and full-scale applications that either treat soil and ground water in place or increase the solubility and mobility of contaminants to improve their removal by other remediation technologies. It is hoped that this information will allow more regular consideration of new, less costly, and more effective technologies to address the problems associated with hazardous waste sites and petroleum.
The purpose of this book is to help engineers and scientists better understand dense nonaqueous phase liquid (DNAPL) contamination of groundwater and the methods and technology used for characterization and remediation. Remediation of DNAPL source zones is very difficult and controversial and must be based on state-of-the-art knowledge of the behavior (transport and fate) of nonaqueous phase liquids in the subsurface and site specific geology, chemistry and hydrology. This volume is focused on the characterization and remediation of nonaqueous phase chlorinated solvents and it is hoped that mid-level engineers and scientists will find this book helpful in understanding the current state-of-practice of DNAPL source zone management and remediation.
The symposium included 600 presentations in 50 sessions on bioremediation and supporting technologies used for a wide range of contaminants already in, or poised to invade, soil, groundwater, and sediment. Three hundred and fifty-two papers were selected and organized into ten volumes. Volume seven's articles examine the use of enhanced anaerobic biotransformation processes for treatment of chlorinated solvents in soil and groundwater. Electron donors used to stimulate reductive dechlorination processes in lab- and field-scale demonstrations are also presented. Articles average eight pages, and contain abstracts and references. Annotation copyrighted by Book News Inc., Portland, OR.
Soil and groundwater contamination stemming from the release of various chlorinated compounds into the environment is a significant and difficult site remediation challenge. The articles in this collection discuss the use of aerobic and anaerobic biological degradation to dehalogenate sites contaminated with pesticides and chlorinated solvents such as trichloroethylene, tetrachloroethene, tetrachloromethene, perchloroethylene, carbon tetrachloride, pentachlorophenol, and chlorinated benzene. Bench- and field-scale studies of the biological processes associated with in situ dechlorination of soil and aquifers are described. Discussed are the uses of microcosm studies and numerical simulation of dechlorination to manage system operation. Site characteristics (e.g., hydraulic properties, temperature, nitrogen availability) and their effect on the stability of the methanotrophic community are examined. Methods discussed include the use of air venting, alternative electron donors, biofilm reactors, surfactants, municipal digester sludge, iron enhancement, and sulfate reduction to improve conditions for the microbial consortia that effect dechlorination.
Sites contaminated with chlorinated compounds pose health risks and are challenging and often expensive to treat in the field. This volume brings together the most up-to-date laboratory findings and the latest full-scale results from bioremediation efforts at actual field sites. Engineering approaches discussed include biobarriers, cometabolism, bioaugmentation, in situ oxidation, Fenton's Reagent, in situ bioremediation, and more.