Download Free Pigeonpea Hybrid Icph 8 Icph 82008 Book in PDF and EPUB Free Download. You can read online Pigeonpea Hybrid Icph 8 Icph 82008 and write the review.

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. This work summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It is an important reference with special focus on accelerated development of improved crop varieties.
This book highlights the uses for underutilized crops, presenting the state-of-the-art in terms of genome sequencing for over 30 crops, previously understudied and under-researched. In a changing climate and with significant pressure on the land, it is the ideal time to be discussing novel crops, with significant biotic and abiotic tolerances and/or rich nutrient profiles for consumers. Previously, the only species with sequenced genomes were high-profile internationally recognized crops, but in the current era genomes are being sequenced for dozens of crops, including those previously classified as underutilized, now being investigated. This book covers food crops, from fruits to tubers, and from grasses to legumes, as well as crops with non-food applications. Some of these crops have draft genomes, and others have polished genomes with extensive resequencing panels. Each chapter tells the story of an individual crop or crop group, written by experts, focusing on the genome data available, revealing more about crop domestication and genetic variation, and the current and future prospects given that this data is now becoming available. It also highlights how even small sequencing projects can provide draft genome sequences suitable for gene discovery, comparative genomics, and identification of molecular markers for understanding these crops further.
Food legumes are important constituents of the human diet and animal feed where they are crucial to a balanced diet, supplying high quality proteins. These crops also play an important role in low-input agricultural production systems by fixing atmospheric nitrogen. Despite systematic and continuous breeding efforts through conventional methods, substantial genetic gains have not been achieved. With the rise in demand for food legumes/pulses and increased market value of these crops, research has focused on increasing production and improving the quality of pulses for both edible and industrial purposes. "Biology and Breeding of Food Legumes" covers the history, origin and evolution, botany, breeding objectives and procedures, nutritional improvement, industrial uses and post-harvest technology and also recent developments made through biotechnological intervention.
Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. The proposed volume work thus plans to summarize concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It will be an important reference with special focus on accelerated development of improved crop varieties.
Grain legumes, including common-bean, chickpea, pigeonpea, pea, cowpea, lentil and others, form important constituents of global diets, both vegetarian and non-vegetarian. Despite this significant role, global production has increased only marginally in the past 50 years. The slow production growth, along with a rising human population and improved buying capacity has substantially reduced the per capita availability of food legumes. Changes in environmental climate have also had significant impact on production, creating a need to identify stable donors among genetic resources for environmentally robust genes and designing crops resilient to climate change. Genetic and Genomic Resources of Grain Legume Improvement is the first book to bring together the latest resources in plant genetics and genomics to facilitate the identification of specific germplasm, trait mapping and allele mining to more effectively develop biotic and abiotic-stress-resistant grains. This book will be an invaluable resource for researchers, crop biologists and students working with crop development. - Explores origin, distribution and diversity of grain legumes - Presents information on germplasm collection, evaluation and maintenance - Offers insight into pre-breeding/germplasm enhancement efforts - Integrates genomic and genetic resources in crop improvement - Internationally contributed work