Download Free Piezoelectric Shells Book in PDF and EPUB Free Download. You can read online Piezoelectric Shells and write the review.

Exploiting new advanced structures and electromechanical systems, e. g. , adaptive structures, high-precision systems, micro electromechanical systems, distributed sensors/actuators, precision manipulation and controls, etc. , has been becoming one of the mainstream research and development activities (structure & motion) in recent years. These new systems and devices could bring a new technological revolution in modern industries and further, directly or indirectly, impact human life. In the search for and research in innovative technologies, it is proved that piezoelectric materials are very versatile in both sensor and actuator applications. Consequently, piezoelectric technology has been widely applied to a large number of industrial applications and devices, varying from thin-film micro sensors/actuators to large space structures in addition to those relatively conventional applications, e. g. , sensors, actuators, hydrophones, precision manipulators, mobile robots, micro motors, etc. There have been a few books on piezoelectricity published in the past; however, a unified presentation of piezoelectric shells and distributed senSing/control applications is still lacking. This book is intended to fill the gap and to pro~de practising engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/actuator technologies in structural identification and control. This book represents a collection of the author's recent research and development on piezoelectric shells and related applications to distributed measurement and control of continuaj it reflects six best-paper awards, including [ xviii] • Contents. two ASME Best-Paper Awards in recent years.
This book offers an introduction to piezoelectric shells and distributed sensing, energy harvesting and control applications. It familiarizes readers with a generic approach of piezoelectric shells and fundamental electromechanics of distributed piezoelectric sensors, energy harvesters and actuators applied to shell structures. The book is divided into two major parts, the first of which focuses on piezoelectric shell continua, while the second examines distributing sensing, energy harvesting and control of elastic continua, e.g., shells and plates. The exploitation of new, advanced multifunctional smart structures and structronic systems has been one of the mainstream research and development activities over the years. In the search for innovative structronics technologies, piezoelectric materials have proved to be very versatile in both sensor and actuator applications. Consequently, the piezoelectric technology has been applied to a broad range of practical applications, from small-scale nano- and micro-sensors/actuators to large-scale airplane and space structures and systems. The book provides practicing engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/energy harvester/actuator technologies in the context of structural identification, energy harvesting and precision control. The book can also be used as a textbook for graduate students. This second edition contains substantial new materials, especially energy harvesting and experimental components, and has been updated and corrected for a new generation of readers.
This is the first book devoted to a systematic description of the linear theory of piezoelectric shells and plates theory. The book contains two parts. In the first part, the theories for electroelastic thin-walled elements of arbitrary form with different directions of preliminary polarization are presented in an easy form for practical use. The approximate methods for integrating the equations of piezoelectric shells and plates are developed and applied for solving some engineering problems. In the second part, the theory of piezoelectric shells and plates is substantiated by the asymptotic method. The area of applicability for different kinds of electroelastic shell theories is studied. A new problem concerning the electroelastic phenomena at the edge of a thin-walled element is raised and solved. The Theory of Piezoelectric Shells and Plates will be valuable to researchers working in the field of electroelasticity as well as to electrical and electronic engineers who use thin-walled piezoelements. It is also be helpful for students and post-graduates specializing in mechanics and for scientists concerning asymptotic methods.
This book offers an introduction to piezoelectric shells and distributed sensing, energy harvesting and control applications. It familiarizes readers with a generic approach of piezoelectric shells and fundamental electromechanics of distributed piezoelectric sensors, energy harvesters and actuators applied to shell structures. The book is divided into two major parts, the first of which focuses on piezoelectric shell continua, while the second examines distributing sensing, energy harvesting and control of elastic continua, e.g., shells and plates. The exploitation of new, advanced multifunctional smart structures and structronic systems has been one of the mainstream research and development activities over the years. In the search for innovative structronics technologies, piezoelectric materials have proved to be very versatile in both sensor and actuator applications. Consequently, the piezoelectric technology has been applied to a broad range of practical applications, from small-scale nano- and micro-sensors/actuators to large-scale airplane and space structures and systems. The book provides practicing engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/energy harvester/actuator technologies in the context of structural identification, energy harvesting and precision control. The book can also be used as a textbook for graduate students. This second edition contains substantial new materials, especially energy harvesting and experimental components, and has been updated and corrected for a new generation of readers.
In recent years, "intelligent (sm. o. rt) structures antlllJ/stems" has become an emerging new research area that is multi-disciplinary in nature, requiring technical expertise from mechanical engineering, structural engineering, electrical engineering, applied mechanics, engineering mathematics, material science, computer science, biological science, etc. This technology is quite likely to contribute significant advancements in the design of high-performance structures, adaptive structures, high-precision systems, micro-systems, etc. Although this emerging area has been rapidly gathering momentum in the last few years, researchers are aware that to some extent only initial, but highly feasible studies of the concepts proposed have been conducted. It is obvious that many important, pertinent fundamental research subjects must yet be investigated and resolved in the near future. We have the privilege to invite a number of highly regarded research scientists and engineers to summarize and contribute the results of their years of research experience with the evolution of intelligent (smart) structures and systems to the collection of chapters contained in this book. Their research topics include current intelligent (smart) structures research activities, piezoelectric structures, shape memory alloy reinforced composites, applications of electrorheological fluids, intelligent sensor systems, adaptive precision trusses, damage detection, model refinement, control of axial moving continua, distributed transducers, etc. These subjects represent only a small portion of the complete picture; indeed, the fundamentally important development of smart or intelligent materials is not addressed in detail here.
Intended for engineers who deal with vibrations of rods and shells in their everyday practice but who also wish to understand the subject from the mathematical point-of-view, the results contained here concerning high-frequency vibrations may be new to many. The book serves equally well as an advanced textbook, while remaining of interest to mathematicians who seek applications of the variational and asymptotic methods in elasticity and piezoelectricity. Only a minimum knowledge in advanced calculus and continuum mechanics is assumed on the part of the reader.
Plate and shell theories experienced a renaissance in recent years. The potentials of smart materials, the challenges of adaptive structures, the demands of thin-film technologies and more on the one hand and the availability of newly developed mathematical tools, the tremendous increase in computer facilities and the improvement of commercial software packages on the other caused a reanimation of the scientific interest. In the present book the contributions of the participants of the EUROMECH Colloquium 444 "Critical Review of the Theories of Plates and Shells and New Applications" have been collected. The aim was to discuss the common roots of different plate and shell approaches, to review the current state of the art, and to develop future lines of research. Contributions were written by scientists with civil and mechanical engineering as well as mathematical and physical background.
Proceedings of the IUTAM Symposium on Smart Structures and Structronic Systems, held in Magdeburg, Germany, 26-29 September 2000