Download Free Piezoelectric Sensors Book in PDF and EPUB Free Download. You can read online Piezoelectric Sensors and write the review.

This volume includes a comprehensive theoretical treatment and current state-of-the art applications of the quartz crystal microbalance (QCM). It discusses interface circuits and the study of viscoelasticity and micromechanics as well as surface roughness with the QCM. Coverage also details the broad field of analytical applications of piezoelectric sensors.
This book introduces physical effects and fundamentals of piezoelectric sensors and actuators. It gives a comprehensive overview of piezoelectric materials such as quartz crystals and polycrystalline ceramic materials. Different modeling approaches and methods to precisely predict the behavior of piezoelectric devices are described. Furthermore, a simulation-based approach is detailed which enables the reliable characterization of sensor and actuator materials. One focus of the book lies on piezoelectric ultrasonic transducers. An optical approach is presented that allows the quantitative determination of the resulting sound fields. The book also deals with various applications of piezoelectric sensors and actuators. In particular, the studied application areas are · process measurement technology, · ultrasonic imaging, · piezoelectric positioning systems and · piezoelectric motors. The book addresses students, academic as well as industrial reseachers and development engineers who are concerned with piezoelectric sensors and actuators.
For the first time, this book covers the entire field of piezoelectric sensors for mechanical measurands. It gives extensive practical advice along with an overview of the most important piezoelectric materials and their properties, plus consistent terminology for describing sensors.
Piezoelectric Transducers and Applications provides a guide for graduate students and researchers to the current state of the art of this complex and multidisciplinary area. The book fills an urgent need for a unified source of information on piezoelectric devices and their astounding variety of existing and emerging applications. Some of the chapters focus more on the basic concepts of the different disciplines involved and are presented in a didactic manner. Others go deeper into the complex aspects of specific fields of research, thus reaching the technical level of a scientific paper. Among other topics resonant sensors, especially bulk acoustic wave thickness shear mode resonators, chemical and bio-sensors, as well as broadband ultrasonic systems are treated in-depth.
This book presents recent developments in vibration control systems that employ embedded piezoelectric sensors and actuators, reviewing ways in which active vibration control systems can be designed for piezoelectric laminated structures, paying distinct attention to how such control systems can be implemented in real time. Includes numerous examples and experimental results obtained from laboratory-scale apparatus, with details of how similar setups can be built.
Presents the fundamental physics of piezoelectric sensors. Only book with this scope Targeted to those engineers, phycisists and chemists who are involved in materials processing, device design and manufacturing.
This updated guide to the current state-of-the-art of this complex and multidisciplinary area fills an urgent need for a unified source of information on piezoelectric devices and their astounding variety of existing and emerging applications. New understandings underlying the principles of Piezoelectric Transducers, new technological advances in its applications, and new areas of utility for these transducers made a second edition of this book inevitable.
Electroacoustic transducers (EAT) are devices, which transform electric energy to energy of acoustic fluctuations. Principles of action, design of transducers for work in air and water as well as for non-destructive control are described in the book. New technologies of designing EAT, not only expanding designing possibilities, are described. They also allow to create transducers with improved characteristics. In particular, methods to increase target capacity (sound pressure), decrease working (resonant) frequency of transducers and expand frequencies of projectors and sound receivers are developed. Methods and control units of transducers in batch production of transducers are described, too.