Download Free Phytobiont And Ecosystem Restitution Book in PDF and EPUB Free Download. You can read online Phytobiont And Ecosystem Restitution and write the review.

This book offers present-day retrospectives and future perspectives on ‘phytobiont’ studies in the context of phyto-micro restitution, filling some of the information gaps in this promising research field. It discusses several ecosystem restitution strategies using dissimilar groups of microbes alone or in association with plants, as well as advances in metagenomics technology for studying in situ micro and macro communities in contaminated soil. It addresses topics such as the status quo, and the perspectives of microbial researchers and scientists, foresters, students, environmentalists, agriculturists and professional engineers. The rising pollution levels caused by xenobiotics is one of the biggest problems of our times, and as such the book comprehensively elaborates the latest research in this field and describes how the issue can be tackled using micro-organisms. With detailed diagrams and illustrations, the book is a valuable resource for experts and novices in the field of microbial bioremediation, phyto-bioremediation and environmental microbiology
Soil harbours a wide range of microorganisms with biotic potentials which can be explored for social benefits. The book Frontiers in Soil and Environmental Microbiology comprises an overview of the complex inter-relationship between beneficial soil microbes and crop plants, and highlights the potential for utilisation to enhance crop productivity, bioremediation and soil health. The book focusses on important areas of research such as biocide production, pesticide degradation and detoxification, microbial decay processes, remediation of soils contaminated with toxic metals, industrial wastes, and hydrocarbon pollutants. Features Presents the state of the art of microbial research in environmental and soil microbiology Discusses an integrated and systematic compilation of microbes in the soil environment and its role in agriculture and plant growth and productivity Elucidates microbial application in environmental remediation Explores advanced genomics topics for uncultivable microbes of soil
This new volume addresses the environmental impacts of pollution on freshwater aquatic ecosystems and presents sustainable management and remediation practices and advanced technology help to address the different types of pollutants. Freshwater Pollution and Aquatic Ecosystems: Environmental Impact and Sustainable Management considers the need for sustainable, efficient, and cost-effective tools and technologies to assess, monitor, and properly manage the increasing issues of aquatic pollution. It provides detailed accounts of the phenomena and mechanisms related to aquatic pollution and highlights the problems and threats associated with pollution contamination in freshwater. It provides useful insight into the sustainable and advanced pollution remediation technology adopted by different countries for the monitoring, assessment, and sustainable management of pollution. The chapters in the volume evaluate the sources of harmful pollutants, which include industrial effluents, sewage, and runoff from agricultural industries, which result in toxic microbes, organic waste, oils, and high load of nutrients. Unsustainable management practices of domestic sewage and indiscriminate use of chemical pesticides lead to the technological disturbance of aquatic biota. In addition to harming aquatic biota, these pollutants find their way into the human body through inhalation, ingestion, or absorption and finally tend to bio-accumulate in trophic levels of the food chain, which poses a major risk to human beings. This book will be a valuable resource for ecologists, environmentalists, scientists, and many others for their work in understanding and management of aquatic pollutants in freshwater biospheres.
Innovative Bio-Based Technologies for Environmental Remediation explores the recent applications of both the latest and broad practical and theoretical aspects of environmental remediation with an aim to combine various innovation-based biotechnology for waste management, waste minimization, and waste to economy. This book summarizes the recent progress of bio-based technologies for environmental remediation at both an experimental and a theoretical model level. An emphasis has been made on trends and the probable future of sustainable techniques to reduce waste and harmful compounds from the environment. Biological-based technologies have low operating costs and involve direct degradation of organic pollutants without the release of toxic intermediates. Recent applications covered in this book include process intensification in bio-based approaches, green technology, phytoremediation, biopolymers, biosurfactants for environmental applications, and other bio-based technologies with sustainable design and the future of remediation are also discussed. This book is an important reference source for environmental scientists and engineers who are seeking to improve their understanding of how bio-based technologies are playing an increasingly important role in environmental remediation. It brings together recent innovations and practices of bio-based technologies for environmental remediation, outlines major bio-based technologies, and discusses biopolymers and biosurfactants for environmental management.
This book covers broader application of biotechnology for the protection of environment through different bioremediation and biodegradation techniques developed for removal of environmental contaminants including the recently discovered contaminants. The book offers a comprehensive overview of environmental pollutants including their fate, behavior, environmental and associated health risks. It is useful reading material for postgraduate and graduate students of environmental biotechnology, environmental microbiology and ecology. Young researchers also find the chapters useful understanding the latest developments.
This book examines the way that lead enters the biosphere and the subsequent environmental impact. The contributing authors include international experts who provide methods for assessing and characterizing the ecological risk of lead contamination of soil and plants. Information is provided on the consequences for human health as a result of lead pollution. This book reveals that approximately 98% of stable lead in the atmosphere originates from human activities. Lead in Plants and the Environment reports on methods for detecting, measuring, and assessing the concentration of lead in plants. The authors provide a method for the measurement of 210Pb isotopes in plants. This method can be applied extensively in different environmental settings, not only as a way of revealing sources of lead, but also as a way to monitor lead transport in plants and animals that ingest them. The chapters include coverage on the following topics: · Lead bioavailability in the environment and its exposure and effects · Radioanalytical methods for detecting and identifying trace concentrations of lead in the environment · Lead contamination and its dynamics in soil plant systems · Lead pollution monitoring and remediation through terrestrial plants in mesocosm constructed wetlands · A review of phytoremediation of lead This book is a valuable resource to students, academics, researchers, and environmental professionals doing field work on lead contamination throughout the world.
Microbe-Assisted Phytoremediation of Environmental Pollutants: Recent Advances and Challenges provides comprehensive information on the principles and practical knowledge of microbe-assisted phytoremediation of organic and inorganic pollutants for environmental safety. This book describes the physiological, biochemical, microbiological, and molecular basis of microbe-assisted phytoremediation and contains many relevant topics to fill the gaps in developing an understanding of microbe-assisted phytoremediation of environmental pollutants. The book provides state-of-the-art knowledge on fundamental, practical, and purposeful utilization of plant-associated bacteria (plant growth-promoting rhizobacteria [PGPR] and endophytes) and arbuscular mycorrhizal fungi for plant-growth promotion and enhanced phytoremediation of environmental pollutants in the contaminated matrix. Features: Provides a state-of-the-art overview of microbe-assisted phytoremediation Emphasizes the roles of PGPR, endophytes, and mycorrhizal fungi in assisted phytoremediation Elucidates biochemical and molecular mechanisms of microbe-assisted phytoremediation Details field studies and success stories of microbe-assisted phytoremediation Explores advances, challenges, and future directions in microbe-assisted phytoremediation The book serves as a valuable resource for researchers, ecotoxicologists, environmental scientists and engineers, environmental microbiologists and biotechnologists, environmental health and risk scientists, environmental science managers and administrators, remediation practitioners, environmental policymakers, and students at the postgraduate and doctoral levels in the relevant fields who wish to work on microbe-assisted phytoremediation of pollutants for environmental safety and sustainability.
This is the first book to present the idea of using Industry 4.0 and smart manufacturing in the microalgae industry for environmental biotechnology. It provides the latest developments on microalgae for use in environmental biotechnology, explains process analysis from an engineering point of view, and discusses the transition to smart manufacturing and how state of the art technologies can be incorporated. It covers applications, technologies, challenges, and future perspectives. • Showcases how Industry 4.0 can be applied in algae industry • Covers new ideas generated from Industry 4.0 for Industrial Internet of Things (IIoT) • Demonstrates new technologies invented to cater to Industry 4.0 in microalgae • Features worked examples related to biological systems Aimed at chemical engineers, bioengineers, and environmental engineers, this is an essential resource for researchers, academics, and industry professionals in the microalgae biotechnology field.
This book provides information about plant–environment studies and challenges for plant improvement to achieve food security. Plants face a wide range of environmental challenges, which are expected to become more intense as a result of global climate change. Plant–environment interactions play an important role in the functioning of ecosystems. There are habitats throughout the world that present challenges to crop plants, such as through a lack of water and excessive, or toxic, salts in the soil. Soil properties represent a strong selection pressure for plant diversity and influence the structure of plant communities and participate to the generation and maintenance of biodiversity. Plant communities selected by environment grow by modifying soil physical, chemical, and biological properties, with consequent effects on survival and growth of plants. The complexity of plant–environment interactions has recently been studied by developing a trait-based approach in which responses and effects of plants on environment were quantified and modeled. This fundamental research on plant–environment interaction in ecosystems is essential to transpose knowledges of functional ecology to environmental management. Plants have adapted to an incredible range of environment, and extensive researches on ecological and environmental plant physiology have provided mechanistic understanding of the survival, distribution, productivity, and abundance of plant species across the diverse climates of our planet. Ecophysiological techniques have greatly advanced our understanding of photosynthesis, respiration, plant water relations, and plant responses to abiotic and biotic stresses, from instantaneous to evolutionary timescales. Ecophysiological studies also provide the basis for scaling plant physiological processes from the tissue to the canopy, ecosystem, region, and to a large extent, the entire globe. Given the above, the author proposes to bring forth a comprehensive book, “New Frontiers in Plant-Environment Interactions”, highlighting the various emerging techniques and applications that are currently being used in plant–environment interaction research and its future prospects. The author is sure that this book caters the need of all those who are working or have interest in the above topic.