Download Free Physics Of New Laser Sources Book in PDF and EPUB Free Download. You can read online Physics Of New Laser Sources and write the review.

This volume contains the lectures and seminars presented at the NATO Advanced Study Institute on "Physics of New Laser Sources", the twelfth course of the Europhysics School of Quantum Electronics, held under the supervision of the Quantum Electronics Division of the European Physical Society. The Institute was held at Centro "I Cappuccini" San Miniato, Tuscany, July 11-21, 1984. The Europhysics School of Quantum Electronics was started in 1970 with the aim of providing instruction for young researchers and advanced students already engaged in the area of quantum electronics or for those wishing to switch into this area after working previously in other areas. From the outset, the School has been under the direction of Prof. F. T. Arecchi, then at the University of Pavia, now at the University of Florence, and Dr. D. Roess of Heraeus, Hanau. In 1981, Prof. H. Walther, University of Munich and Max-Planck Institut fur Quantenoptik joined as co-director. Each year the Directors choose a subj~ct of particular interest, alternating fundamental topics with technological ones, and ask colleagues specifically competent in the chosen areas to take the scientific responsibility for that course.
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
The conference "Laser Science and Technology" was held May 11-19, 1987 in Erice, Sicily. This was the 12th conference organized by the Internatio nal School of Quantum Electronics, under the auspices of the "Ettore Majorana" Center for Scientific Culture. This volume contains both the in vited and contributed papers presented at the conference, covering current research work in two areas: new laser sources, and laser applications. The operation of the first laser by Dr. Theodore Maiman in 1960 initia ted a decade of scientific exploration of new laser sources. This was fol lowed by the decade of the 1970s, which was characterized by "technology push" in which the discoveries of the 1960s were seeking practical applica tion. In the 1980s we are instead seeking "applications pull," in which the success and rapid maturing of laser applications provides both inspiration and financial resources to stimulate additional work both on laser sources and applications. The papers presented in these Proceedings attest to the great vitali ty of research in both these areas: New Laser Sources. The papers describe current developments in ultra violet excimer lasers, X-ray lasers, and free electron lasers. These new lasers share several characteristics: each is a potentially important coher ent source; each is at a relatively short wavelength (below 1 micrometer); and each is receiving significant development attention today.
Recent years have witnessed rapid advances in the development of solid state, fiber, semiconductor, and parametric sources of coherent radiation, which are opening up new opportunities for laser applications. Laser Sources and Applications provides a tutorial introduction to the basic principles of these developments at a level suitable for postgraduate research students and others with a basic knowledge of lasers and nonlinear optics. Encompassing both the physics and engineering aspects of the field, the book covers the nature of nonlinear optical interactions; solid state, fiber, and semiconductor lasers; optical parametric oscillators; and ultrashort pulse generation and applications. It also explores applications of current interest, such as electromagnetically induced transparency, atomic trapping, and soliton optical communications.
This is the third edition of a well-known classic on ultrafast nonlinear and linear processes responsible for supercontinuum generation. Part I of the book reviews the progress achieved in experimental and theoretical understanding of the field, and goes over the applications developed since the discovery of the supercontinuum effect. The second part of the book covers recent research activity on supercontinuum phenomena and advances achieved since the publication of the previous edition. The new chapters specifically focus on: normal dispersion photonic band gap fibers; coherence in the supercontinuum; supercontinuum in the UV, NIR, and IR; and supercontinuum in XUV and X-rays for attosecond pulses. The Supercontinuum Laser Source is a definitive work by one of the discoverers of the white light effect. It is indispensable reading for any researcher or student working in the field of ultrafast laser physics.
The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. Offering authoritative reviews by internationally recognized experts, the book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The instructive nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring a broad introduction to the subject.
The conference "Laser Science and Technology" was held May 11-19, 1987 in Erice, Sicily. This was the 12th conference organized by the Internatio nal School of Quantum Electronics, under the auspices of the "Ettore Majorana" Center for Scientific Culture. This volume contains both the in vited and contributed papers presented at the conference, covering current research work in two areas: new laser sources, and laser applications. The operation of the first laser by Dr. Theodore Maiman in 1960 initia ted a decade of scientific exploration of new laser sources. This was fol lowed by the decade of the 1970s, which was characterized by "technology push" in which the discoveries of the 1960s were seeking practical applica tion. In the 1980s we are instead seeking "applications pull," in which the success and rapid maturing of laser applications provides both inspiration and financial resources to stimulate additional work both on laser sources and applications. The papers presented in these Proceedings attest to the great vitali ty of research in both these areas: New Laser Sources. The papers describe current developments in ultra violet excimer lasers, X-ray lasers, and free electron lasers. These new lasers share several characteristics: each is a potentially important coher ent source; each is at a relatively short wavelength (below 1 micrometer); and each is receiving significant development attention today.
Nonlinear optics is one of the most important fields of science and engineering, covering the generation, transmission, and control of the whole spectrum of laser pulses in solids, liquids, gases, and fibers. In turn, one of the most important ultrafast nonlinear optical processes is the supercontinuum generation - the production of intense ultrafast broadband "white light" pulses. This book is intended to fill the need of both scientists and graduate students for a single source book containing the most necessary and relevant material on supercontinuum technology. It reviews the basic principles, surveys research results, and presents the current thinking of experts in the supercontinuum field.