Download Free Physics Of Nanostructures Book in PDF and EPUB Free Download. You can read online Physics Of Nanostructures and write the review.

Textbook introducing engineers to quantum mechanics and nanostructures, covering the fundamentals and applications to nanoscale materials and nanodevices.
Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.
A carefully developed textbook focusing on the fundamental principles of nanoscale science and nanotechnology.
Nanostructures covers the main concepts and fundamentals of nanoscience emphasizing characteristics and properties of numerous nanostructures. This book offers a clear explanation of nanostructured materials via several examples of synthesis/processing methodologies and materials characterization. In particular, this book is targeted to a range of scientific backgrounds, with some chapters written at an introductory level and others with the in-depth coverage required for a seasoned professional. Nanostructures is an important reference source for early-career researchers and practicing materials scientists and engineers seeking a focused overview of the science of nanostructures and nanostructured systems, and their industrial applications. - Presents an accessible overview of the science behind, and industrial uses of, nanostructures. Gives materials scientists and engineers an understanding of how using nanostructures may increase material performance - Targeted to a wide audience, including graduate and postgraduate study with a didactic approach to aid fluid learning - Features an analysis of different nanostructured systems, explaining their properties and industrial applications
Continuing miniaturization of electronic devices, together with the quickly growing number of nanotechnological applications, demands a profound understanding of the underlying physics. Most of the fundamental problems of modern condensed matter physics involve various aspects of quantum transport and fluctuation phenomena at the nanoscale. In nanostructures, electrons are usually confined to a limited volume and interact with each other and lattice ions, simultaneously suffering multiple scattering events on impurities, barriers, surface imperfections, and other defects. Electron interaction with other degrees of freedom generally yields two major consequences, quantum dissipation and quantum decoherence. In other words, electrons can lose their energy and ability for quantum interference even at very low temperatures. These two different, but related, processes are at the heart of all quantum phenomena discussed in this book. This book presents copious details to facilitate the understanding of the basic physics behind a result and the learning to technically reproduce the result without delving into extra literature. The book subtly balances the description of theoretical methods and techniques and the display of the rich landscape of the physical phenomena that can be accessed by these methods. It is useful for a broad readership ranging from master’s and PhD students to postdocs and senior researchers.
This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.
Although there are many books available on the preparation, properties, and characterization of nanomaterials, few provide an interdisciplinary account of the physical phenomena that govern the novel properties of nanomaterials. Addressing this shortfall, Nanoscale Physics for Materials Science covers fundamental cross-disciplinary concepts in mate
Nanostructures and Mesoscopic Systems presents the proceedings of the International Symposium held in Santa Fe, New Mexico on May 20-24, 1991. The book discusses nanostructure physics; nanostructures in motion; and advances in nanostructure fabrication. The text also describes ballistic transport and coherence; low-dimensional tunneling; and electron correlation and coulomb blockade. Banostructure arrays and collective effects; the theory and modeling of nanostructures; and mesoscopic systems are also encompassed. The book further tackles the optical properties of nanostructures.
Advances in Semiconductor Nanostructures: Growth, Characterization, Properties and Applications focuses on the physical aspects of semiconductor nanostructures, including growth and processing of semiconductor nanostructures by molecular-beam epitaxy, ion-beam implantation/synthesis, pulsed laser action on all types of III–V, IV, and II–VI semiconductors, nanofabrication by bottom-up and top-down approaches, real-time observations using in situ UHV-REM and high-resolution TEM of atomic structure of quantum well, nanowires, quantum dots, and heterostructures and their electrical, optical, magnetic, and spin phenomena. The very comprehensive nature of the book makes it an indispensable source of information for researchers, scientists, and post-graduate students in the field of semiconductor physics, condensed matter physics, and physics of nanostructures, helping them in their daily research. - Presents a comprehensive reference on the novel physical phenomena and properties of semiconductor nanostructures - Covers recent developments in the field from all over the world - Provides an International approach, as chapters are based on results obtained in collaboration with research groups from Russia, Germany, France, England, Japan, Holland, USA, Belgium, China, Israel, Brazil, and former Soviet Union countries
This book presents the most relevant and recent results in the study of “Nanoelectromagnetics”, a recently born fascinating research discipline, whose popularity is fast arising with the intensive penetration of nanotechnology in the world of electronics applications. Studying nanoelectromagnetics means describing the interaction between electromagnetic radiation and quantum mechanical low-dimensional systems: this requires a full interdisciplinary approach, the reason why this book hosts contributions from the fields of fundamental and applied electromagnetics, of chemistry and technology of nanostructures and nanocomposites, of physics of nano-structures systems, etc. The book is aimed at providing the reader with the state of the art in Nanoelectromagnetics, from theoretical modelling to experimental characterization, from design to synthesis, from DC to microwave and terahertz applications, from the study of fundamental material properties to the analysis of complex systems and devices, from commercial thin-film coatings to metamaterials to circuit components and nanodevices. The book is intended as a reference in advanced courses for graduate students and as a guide for researchers and industrial professionals involved in nanoelectronics and nanophotonics applications.