Download Free Physics Of Gravitational Waves Book in PDF and EPUB Free Download. You can read online Physics Of Gravitational Waves and write the review.

This most up-to-date, one-stop reference combines coverage of both theory and observational techniques, with introductory sections to bring all readers up to the same level. Written by outstanding researchers directly involved with the scientific program of the Laser Interferometer Gravitational-Wave Observatory (LIGO), the book begins with a brief review of general relativity before going on to describe the physics of gravitational waves and the astrophysical sources of gravitational radiation. Further sections cover gravitational wave detectors, data analysis, and the outlook of gravitational wave astronomy and astrophysics.
The direct detection of gravitational waves in 2015 has initiated a new era of gravitational wave astronomy, which has already paid remarkable dividends in our understanding of astrophysics and gravitational physics. Aimed at advanced undergraduates and graduate students, this book introduces gravitational waves and its many applications to cosmology, nuclear physics, astrophysics and theoretical physics.
On 14 September 2015, after 50 years of searching, gravitational waves were detected for the first time and astronomy changed for ever. Until then, investigation of the universe had depended on electromagnetic radiation: visible light, radio, X-rays and the rest. But gravitational waves – ripples in the fabric of space and time – are unrelenting, passing through barriers that stop light dead. At the two 4-kilometre long LIGO observatories in the US, scientists developed incredibly sensitive detectors, capable of spotting a movement 100 times smaller than the nucleus of an atom. In 2015 they spotted the ripples produced by two black holes spiralling into each other, setting spacetime quivering. This was the first time black holes had ever been directly detected – and it promises far more for the future of astronomy. Brian Clegg presents a compelling story of human technical endeavour and a new, powerful path to understand the workings of the universe.
The two volumes of 'Gravitational Waves' provide a comprehensive and detailed account of the physics of gravitational waves. Volume 2 discusses what can be learned from gravitational waves in astrophysics and in cosmology, by systematising a large body of theoretical developments that have taken place over the last decades.
The two-volume book Gravitational Waves provides a comprehensive and detailed account of the physics of gravitational waves. While Volume 1 is devoted to the theory and experiments, Volume 2 discusses what can be learned from gravitational waves in astrophysics and in cosmology, by systematizing a large body of theoretical developments that have taken place over the last decades. The second volume also includes a detailed discussion of the first direct detections of gravitational waves. In the author's typical style, the theoretical results are generally derived afresh, clarifying or streamlining the existing derivations whenever possible, and providing a coherent and consistent picture of the field. The first volume of Gravitational Waves , which appeared in 2007, has established itself as the standard reference in the field. The scientific community has eagerly awaited this second volume. The recent direct detection of gravitational waves makes the topics in this book particularly timely.
An internationally famous physicist and electrical engineer, the author of this text was a pioneer in the investigation of gravitational waves. Joseph Weber's General Relativity and Gravitational Waves offers a classic treatment of the subject. Appropriate for upper-level undergraduates and graduate students, this text remains ever relevant. Brief but thorough in its introduction to the foundations of general relativity, it also examines the elements of Riemannian geometry and tensor calculus applicable to this field. Approximately a quarter of the contents explores theoretical and experimental aspects of gravitational radiation. The final chapter focuses on selected topics related to general relativity, including the equations of motion, unified field theories, Friedman's solution of the cosmological problem, and the Hamiltonian formulation of general relativity. Exercises. Index.
A fascinating account, written in real time, of the unfolding of a scientific discovery: the first detection of gravitational waves.
The birth of a completely new branch of observational astronomy is a rare and exciting occurrence. For a long time, our theories about gravitational waves—proposed by Albert Einstein and others more than a hundred years ago—could never be fully proven, since we lacked the proper technology to do it. That all changed when, on September 14, 2015, instruments at the LIGO Observatory detected gravitational waves for the first time. This book explores the nature of gravitational waves—what they are, where they come from, why they are so significant and why nobody could prove they existed before now. Written in plain language and interspersed with additional explanatory tutorials, it will appeal to lay readers, science enthusiasts, physical science students, amateur astronomers and to professional scientists and astronomers.
An authoritative interdisciplinary account of the historic discovery of gravitational waves In 1915, Albert Einstein predicted the existence of gravitational waves—ripples in the fabric of spacetime caused by the movement of large masses—as part of the theory of general relativity. A century later, researchers with the Laser Interferometer Gravitational-Wave Observatory (LIGO) confirmed Einstein's prediction, detecting gravitational waves generated by the collision of two black holes. Shedding new light on the hundred-year history of this momentous achievement, Einstein Was Right brings together essays by two of the physicists who won the Nobel Prize for their instrumental roles in the discovery, along with contributions by leading scholars who offer unparalleled insights into one of the most significant scientific breakthroughs of our time. This illuminating book features an introduction by Tilman Sauer and invaluable firsthand perspectives on the history and significance of the LIGO consortium by physicists Barry Barish and Kip Thorne. Theoretical physicist Alessandra Buonanno discusses the new possibilities opened by gravitational wave astronomy, and sociologist of science Harry Collins and historians of science Diana Kormos Buchwald, Daniel Kennefick, and Jürgen Renn provide further insights into the history of relativity and LIGO. The book closes with a reflection by philosopher Don Howard on the significance of Einstein's theory for the philosophy of science. Edited by Jed Buchwald, Einstein Was Right is a compelling and thought-provoking account of one of the most thrilling scientific discoveries of the modern age.
This book describes detection techniques used to search for and analyze gravitational waves (GW). It covers the whole domain of GW science, starting from the theory and ending with the experimental techniques (both present and future) used to detect them.The theoretical sections of the book address the theory of general relativity and of GW, followed by the theory of GW detection. The various sources of GW are described as well as the methods used to analyse them and to extract their physical parameters. It includes an analysis of the consequences of GW observations in terms of astrophysics as well as a description of the different detectors that exist and that are planned for the future.With the recent announcement of GW detection and the first results from LISA Pathfinder, this book will allow non-specialists to understand the present status of the field and the future of gravitational wave science.