Download Free Physics In Molecular Biology Book in PDF and EPUB Free Download. You can read online Physics In Molecular Biology and write the review.

This book, first published in 2005, is a discussion for advanced physics students of how to use physics to model biological systems.
Soft condensed matter physics, which emerged as a distinct branch of physics in the 1990s, studies complex fluids: liquids in which structures with length scale between the molecular and the macroscopic exist. Polymers, liquid crystals, surfactant solutions, and colloids fall into this category. Physicists deal with properties of soft matter system
Physics and Biology demonstrates the unlimited possibilities of physics in explaining a variety of biological phenomena. It explores developments in biophysics and the most general problems of biological thermodynamics, information theory, and the physical theory of biological development and how they are all connected with the biophysics of complicated systems. Organized into 13 chapters, this volume begins with a historical overview of biophysics, with emphasis on molecular biophysics, followed by a discussion of the biophysics of the cell and of complicated systems. It then introduces the reader to the physical basis of theoretical chemistry and biologically functional substances, with emphasis on some concepts that are necessary for the understanding of molecular biophysics. The next chapters focus on some properties of biopolymers such as proteins and nucleic acids, how molecules interact with each other, and the peculiarities of macromolecules. More specifically, the molecules of organic substances, the chemical reaction involved in molecular interactions, van der Waals forces, and the role of hydrogen bonds in biological processes are considered. The final chapter analyzes the physicochemical basis of the functions of biological molecules. This book will be a valuable resource for physicists, biologists, chemists, natural scientists, and anyone who wants help in tackling some important biophysics-related problems in the contemporary natural sciences.
Provides an introduction to the structure and function of biomolecules --- especially proteins --- and the physical tools used to investigate them The discussion concentrates on physical tools and properties, emphasizing techniques that are contributing to new developments and avoiding those that are already well established and whose results have already been exploited fully New tools appear regularly - synchrotron radiation, proton radiology, holography, optical tweezers, and muon radiography, for example, have all been used to open new areas of understanding
Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.
acids. The achievements of molecular biology testify to the success of material science in a realm which, until recently, appeared totally enig matic and mysterious. Further scientific developments should bring to mankind vast developments both in theoretical knowledge and in practical applications, namely, in agriculture, medicine, and technology. The purpose of this book is to explain molecular biophysics to all who might wish to learn about it, to biologists, to physicists, to chemists. This book contains descriptive sections, as well as sections devoted to rigorous mathematical treatment of a number of problems, some of which have been studied by the author and his collaborators. These sections may be omitted during a first reading. Each chapter has a selected bibliography. This book is far from an exhaustive treatise on molecular biophysics. It deals principally with questions related to the structures and functions of proteins and nucleic acids. M. V. Vol'kenshtein Leningrad, September, 1964 CONTENTS Chapter 1 Physics and Biology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Physics and Life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Molecular Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Molecular Biophysics ................................... 9 Thermodynamics and Biology. . . . . . . . . . . . . . . . . . . . . 12 . . . . . . . Information Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 . . . . . . . . . . Chapter 2 Cells, Viruses, and Heredity. . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . The Living Cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . Cell Division. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 . . . . . . . . . . . . Viruses and Bacteriophages ........... . . . . . . . . . . . . . . . 44 . . . . Basic Laws of Genetics . . . . . . . . . . . . . . . . . . . . . . . . . 50 . . . . . . . . . Mutations and Mutability ........ , ................. " . . . . 60 Genetics of Bacteria and Phages " . . . . . . . . . . . . . . . . . . 66 . . . . . . Chapter 3 Biological Molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 . . . . . . . . . . Amino Acids and Proteins . . . . . . . . . . . . . . . . . . . . . . . 79 . . . . . . . . Asymmetry of Biological Molecules ....................... 87 Primary Structure of Proteins ............................ 94 Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 . . . . . . . . . . . . Some Biochemical Processes in the Cell. . . . . . . . . . . . . . . . 109 . . . . Chapter 4 Physics of Macromolecules. . . . . . . . . . . . . . . . . . . . . . . . 123 . . . . . . . . .
"This book is an introductory course in molecular biology for mathematicians, physicists, and engineers. It covers the basic features of DNA, proteins, and cells but in the context of recent technological advances, such as next-generation sequencing and high-throughput screens, and their applications. This enables readers to move rapidly from the b
Biophysics is a new way of looking at living matter. It uses quantitative experimental and theoretical methods to open a new window for studying and understanding life processes. This textbook gives compact introductions to the basics of the field, including molecular cell biology and statistical physics. It then presents in-depth discussions of more advanced biophysics subjects, progressing to state-of-the-art experiments and their theoretical interpretations. The book is unique by offering a general introduction to biophysics, yet at the same time restricting itself to processes that occur inside the cell nucleus and that involve biopolymers (DNA, RNA, and proteins). This allows for an accessible read for beginners and a springboard for specialists who wish to continue their study in more detail.
Molecular Biophysics presents the fundamental principles of biophysics and their application to the study of the physical properties of biological macromolecules. The merger of biology and physics involves the development of sophisticated instrumentation and the molecular approach to the study of life phenomena. This book is composed of nine chapters and begins with an overview of the thermodynamical aspects and chemical foundations of biophysics. These topics are followed by the physical aspects of macromolecules, with a particular emphasis on the biological functions, conformation, and hydrophobic interactions of proteins. The subsequent chapter describes the structural and electro-optical properties of biopolymers based on X-ray, optical, and spectroscopic analysis. The discussion then shifts to enzymes, their chemical kinetics, catalytic potential, and conformational and cooperative properties. The remaining chapters explore the physical aspects of nucleic acids and the biosynthesis of proteins. This book will prove useful to molecular biophysicists, biologists, physicists, and researchers in the fields of life sciences.