Download Free Physics And Properties Of Narrow Gap Semiconductors Book in PDF and EPUB Free Download. You can read online Physics And Properties Of Narrow Gap Semiconductors and write the review.

Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. They often operate at the extremes of the rules of semiconductor science. This book offers clear descriptions of crystal growth and the fundamental structure and properties of these unique materials. Topics covered include band structure, optical and transport properties, and lattice vibrations and spectra. A thorough treatment of the properties of low-dimensional systems and their relation to infrared applications is provided.
Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors, a forthcoming second book, offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The final chapter describes the device physics of photoconductive detectors, photovoltaic infrared detectors, super lattices and quantum wells, infrared lasers, and single photon infrared detectors.
Proceedings of the International Summer School, held in Nimes, France, September, 3-15, 1979
Excellent bridge between general solid-state physics textbook and research articles packed with providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors "The most striking feature of the book is its modern outlook ... provides a wonderful foundation. The most wonderful feature is its efficient style of exposition ... an excellent book." Physics Today "Presents the theoretical derivations carefully and in detail and gives thorough discussions of the experimental results it presents. This makes it an excellent textbook both for learners and for more experienced researchers wishing to check facts. I have enjoyed reading it and strongly recommend it as a text for anyone working with semiconductors ... I know of no better text ... I am sure most semiconductor physicists will find this book useful and I recommend it to them." Contemporary Physics Offers much new material: an extensive appendix about the important and by now well-established, deep center known as the DX center, additional problems and the solutions to over fifty of the problems at the end of the various chapters.
In this monograph, investigations of the performance of narrow-gap semiconductor photodiodes are presented, and recent progress in different IR photodiode technologies is discussed: HgCdTe photodiodes, InSb photodiodes, alternatives to HgCdTe III-V and II-VI ternary alloy photodiodes, lead chalcogenide photodiodes, and a new class of photodiodes based on two-dimensional solids. Investigations of the performance of photodiodes operated in different spectral regions are presented.
A presentation of the peculiarities of the physical properties of a comparatively new class of solids. GSs are of practical interest since they are very sensitive to impurities, and to the influence of light, magnetic and electric fields, and to pressure.
Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed. The book further tackles current-current correlations; the fluctuation-dissipation theorem; and the effect of surface plasmons on optical properties and photoemission. People involved in the study of the optical properties of solids will find the book invaluable.
Narrow gap semiconductors have provided an exciting field of research and show a number of extreme physical and material characteristics. They are the established material systems for infrared detectors and emitters, and with new developments in the technology these materials are emerging as a viable route to high speed, low power electronics. New kinds of narrow gap semiconductor, such as graphene and other composite nanocrystals, are also providing renewed interest in the underlying physics. The Thirteenth International Conference on Narrow Gap Semiconductors (NGS-13) was held at the University of Surrey, Guildford, UK in July 2007. The conference brought together experts and young scientists to discuss the latest findings and developments in the field. This book contains the invited and contributed papers which were presented at this meeting and serves to provide a broad overview of the current worldwide activities in narrow gap semiconductor research. The subjects covered are theoretical and material physics of narrow gap semiconductors and quantum heterostructures, spin related phenomenon including carrier dynamics and magnetotransport, carbon nanotubes and graphene as novel narrow gap material, as well as device physics including transistors, mid and far-infrared lasers and detectors.
Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.