Download Free Physical Layer Security In Wireless Communications Book in PDF and EPUB Free Download. You can read online Physical Layer Security In Wireless Communications and write the review.

Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. Presenting high-level discussions along with specific examples, and illustrations, this is an ideal reference for anyone that needs to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.
This book focuses specifically on physical layer security, a burgeoning topic in security. It consists of contributions from the leading research groups in this emerging area, and for the first time important high-impact results are collected together.
Securely transferring confidential information over a wireless network is a challenging task. This book addresses security issues, not only for 5G but also beyond, using physical layer security technology and techniques.
This complete guide to physical-layer security presents the theoretical foundations, practical implementation, challenges and benefits of a groundbreaking new model for secure communication. Using a bottom-up approach from the link level all the way to end-to-end architectures, it provides essential practical tools that enable graduate students, industry professionals and researchers to build more secure systems by exploiting the noise inherent to communications channels. The book begins with a self-contained explanation of the information-theoretic limits of secure communications at the physical layer. It then goes on to develop practical coding schemes, building on the theoretical insights and enabling readers to understand the challenges and opportunities related to the design of physical layer security schemes. Finally, applications to multi-user communications and network coding are also included.
This book studies the vulnerability of wireless communications under line-of-sight (LoS) and non-LoS correlated fading environments. The authors theoretically and practically provide physical layer security analyses for several technologies and networks such as Fifth-Generation (5G) networks, Internet of Things (IoT) applications, and Non-orthogonal multiple access (NOMA). The authors have provided these under various practical scenarios, and developed theoretical aspects to validate their proposed applications. Presents physical layer security (PLS) under correlated fading environments, 5G wireless networks, and NOMA networks; Provides end-to-end analyses, combination of channel correlation and outdated CSI and their effects on PL; Includes contributions of PLS research written by global experts in academia and industry.
The first comprehensive guide to the design and implementation of security in 5G wireless networks and devices Security models for 3G and 4G networks based on Universal SIM cards worked very well. But they are not fully applicable to the unique security requirements of 5G networks. 5G will face additional challenges due to increased user privacy concerns, new trust and service models and requirements to support IoT and mission-critical applications. While multiple books already exist on 5G, this is the first to focus exclusively on security for the emerging 5G ecosystem. 5G networks are not only expected to be faster, but provide a backbone for many new services, such as IoT and the Industrial Internet. Those services will provide connectivity for everything from autonomous cars and UAVs to remote health monitoring through body-attached sensors, smart logistics through item tracking to remote diagnostics and preventive maintenance of equipment. Most services will be integrated with Cloud computing and novel concepts, such as mobile edge computing, which will require smooth and transparent communications between user devices, data centers and operator networks. Featuring contributions from an international team of experts at the forefront of 5G system design and security, this book: Provides priceless insights into the current and future threats to mobile networks and mechanisms to protect it Covers critical lifecycle functions and stages of 5G security and how to build an effective security architecture for 5G based mobile networks Addresses mobile network security based on network-centricity, device-centricity, information-centricity and people-centricity views Explores security considerations for all relative stakeholders of mobile networks, including mobile network operators, mobile network virtual operators, mobile users, wireless users, Internet-of things, and cybersecurity experts Providing a comprehensive guide to state-of-the-art in 5G security theory and practice, A Comprehensive Guide to 5G Security is an important working resource for researchers, engineers and business professionals working on 5G development and deployment.
"This book examines the current scope of theoretical and practical applications on the security of mobile and wireless communications, covering fundamental concepts of current issues, challenges, and solutions in wireless and mobile networks"--Provided by publisher.
Explore foundational and advanced issues in UAV cellular communications with this cutting-edge and timely new resource UAV Communications for 5G and Beyond delivers a comprehensive overview of the potential applications, networking architectures, research findings, enabling technologies, experimental measurement results, and industry standardizations for UAV communications in cellular systems. The book covers both existing LTE infrastructure, as well as future 5G-and-beyond systems. UAV Communications covers a range of topics that will be of interest to students and professionals alike. Issues of UAV detection and identification are discussed, as is the positioning of autonomous aerial vehicles. More fundamental subjects, like the necessary tradeoffs involved in UAV communication are examined in detail. The distinguished editors offer readers an opportunity to improve their ability to plan and design for the near-future, explosive growth in the number of UAVs, as well as the correspondingly demanding systems that come with them. Readers will learn about a wide variety of timely and practical UAV topics, like: Performance measurement for aerial vehicles over cellular networks, particularly with respect to existing LTE performance Inter-cell interference coordination with drones Massive multiple-input and multiple-output (MIMO) for Cellular UAV communications, including beamforming, null-steering, and the performance of forward-link C&C channels 3GPP standardization for cellular-supported UAVs, including UAV traffic requirements, channel modeling, and interference challenges Trajectory optimization for UAV communications Perfect for professional engineers and researchers working in the field of unmanned aerial vehicles, UAV Communications for 5G and Beyond also belongs on the bookshelves of students in masters and PhD programs studying the integration of UAVs into cellular communication systems.
This book provides an accessible and comprehensive tutorial on the key enabling technologies for 5G and beyond, covering both the fundamentals and the state-of-the-art 5G standards. The book begins with a historical overview of the evolution of cellular technologies and addresses the questions on why 5G and what is 5G. Following this, six tutorial chapters describe the fundamental technology components for 5G and beyond. These include modern advancements in channel coding, multiple access, massive multiple-input and multiple-output (MIMO), network densification, unmanned aerial vehicle enabled cellular networks, and 6G wireless systems. The second part of this book consists of five chapters that introduce the basics of 5G New Radio (NR) standards developed by 3GPP. These include 5G architecture, protocols, and physical layer aspects. The third part of this book provides an overview of the key 5G NR evolution directions. These directions include ultra-reliable low-latency communication (URLLC) enhancements, operation in unlicensed spectrum, positioning, integrated access and backhaul, air-to-ground communication, and non-terrestrial networks with satellite communication.
Receive comprehensive instruction on the fundamentals of wireless security from three leading international voices in the field Security in Wireless Communication Networksdelivers a thorough grounding in wireless communication security. The distinguished authors pay particular attention to wireless specific issues, like authentication protocols for various wireless communication networks,encryption algorithms and integrity schemes on radio channels, lessons learned from designing secure wireless systems and standardization for security in wireless systems. The book addresses how engineers, administrators, and others involved in the design and maintenance of wireless networks can achieve security while retaining the broadcast nature of the system, with all of its inherent harshness and interference. Readers will learn: A comprehensive introduction to the background of wireless communication network security, including a broad overview of wireless communication networks, security services, the mathematics crucial to the subject, and cryptographic techniques An exploration of wireless local area network security, including Bluetooth security, Wi-Fi security, and body area network security An examination of wide area wireless network security, including treatments of 2G, 3G, and 4G Discussions of future development in wireless security, including 5G, and vehicular ad-hoc network security Perfect for undergraduate and graduate students in programs related to wireless communication, Security in Wireless Communication Networks will also earn a place in the libraries of professors, researchers, scientists, engineers, industry managers, consultants, and members of government security agencies who seek to improve their understanding of wireless security protocols and practices.