Download Free Physical Layer Security Book in PDF and EPUB Free Download. You can read online Physical Layer Security and write the review.

Physical Layer Security in Wireless Communications supplies a systematic overview of the basic concepts, recent advancements, and open issues in providing communication security at the physical layer. It introduces the key concepts, design issues, and solutions to physical layer security in single-user and multi-user communication systems, as well as large-scale wireless networks. Presenting high-level discussions along with specific examples, and illustrations, this is an ideal reference for anyone that needs to obtain a macro-level understanding of physical layer security and its role in future wireless communication systems.
This complete guide to physical-layer security presents the theoretical foundations, practical implementation, challenges and benefits of a groundbreaking new model for secure communication. Using a bottom-up approach from the link level all the way to end-to-end architectures, it provides essential practical tools that enable graduate students, industry professionals and researchers to build more secure systems by exploiting the noise inherent to communications channels. The book begins with a self-contained explanation of the information-theoretic limits of secure communications at the physical layer. It then goes on to develop practical coding schemes, building on the theoretical insights and enabling readers to understand the challenges and opportunities related to the design of physical layer security schemes. Finally, applications to multi-user communications and network coding are also included.
This book focuses specifically on physical layer security, a burgeoning topic in security. It consists of contributions from the leading research groups in this emerging area, and for the first time important high-impact results are collected together.
This book studies the vulnerability of wireless communications under line-of-sight (LoS) and non-LoS correlated fading environments. The authors theoretically and practically provide physical layer security analyses for several technologies and networks such as Fifth-Generation (5G) networks, Internet of Things (IoT) applications, and Non-orthogonal multiple access (NOMA). The authors have provided these under various practical scenarios, and developed theoretical aspects to validate their proposed applications. Presents physical layer security (PLS) under correlated fading environments, 5G wireless networks, and NOMA networks; Provides end-to-end analyses, combination of channel correlation and outdated CSI and their effects on PL; Includes contributions of PLS research written by global experts in academia and industry.
This textbook integrates the most advanced topics of physical-layer security, cryptography, covert/stealth communications, quantum key distribution (QKD), and cyber security to tackle complex security issues. After introducing the reader to various concepts and practices, the author addresses how these can work together to target problems, rather than treating them as separate disciplines. This book offers students an in-depth exposition on: cryptography, information-theoretic approach to cryptography, physical-layer security, covert/stealth/low-probability of detection communications, quantum information theory, QKD, and cyber security; to mention few. The goal is to provide a unified description of the most advanced topics related to: (i) modern cryptography, (ii) physical-layer security, (iii) QKD, (iv) covert communications, and (v) cyber security. Each chapter is followed by a set of problems. Also, for readers to better understand the book, an appendix covers all needed background. Homework problems and lecture notes are available online. The book does not require any prior knowledge or prerequisite material.
Securely transferring confidential information over a wireless network is a challenging task. This book addresses security issues, not only for 5G but also beyond, using physical layer security technology and techniques.
This book investigates key security issues in connection with the physical layer for random wireless cellular networks. It first introduces readers to the fundamentals of information theoretic security in the physical layer. By examining recently introduced security techniques for wireless point-to-point communications, the book proposes new solutions to physical layer security based on stochastic geometric frameworks for random cellular networks. It subsequently elaborates on physical-layer security in multi-tier heterogeneous networks. With the new modeled settings, the authors also verify the security performance with the impact of the full-duplex transceivers. The specific model design presented here offers a valuable point of reference for readers in related areas. In addition, the book highlights promising topics and proposes potential future research directions.
In the modern world, natural disasters are becoming more commonplace, unmanned systems are becoming the norm, and terrorism and espionage are increasingly taking place online. All of these threats have made it necessary for governments and organizations to steel themselves against these threats in innovative ways. Developing Next-Generation Countermeasures for Homeland Security Threat Prevention provides relevant theoretical frameworks and empirical research outlining potential threats while exploring their appropriate countermeasures. This relevant publication takes a broad perspective, from network security, surveillance, reconnaissance, and physical security, all topics are considered with equal weight. Ideal for policy makers, IT professionals, engineers, NGO operators, and graduate students, this book provides an in-depth look into the threats facing modern society and the methods to avoid them.
5G Physical Layer: Principles, Models and Technology Components explains fundamental physical layer design principles, models and components for the 5G new radio access technology – 5G New Radio (NR). The physical layer models include radio wave propagation and hardware impairments for the full range of frequencies considered for the 5G NR (up to 100 GHz). The physical layer technologies include flexible multi-carrier waveforms, advanced multi-antenna solutions, and channel coding schemes for a wide range of services, deployments, and frequencies envisioned for 5G and beyond. A MATLAB-based link level simulator is included to explore various design options. 5G Physical Layer is very suitable for wireless system designers and researchers: basic understanding of communication theory and signal processing is assumed, but familiarity with 4G and 5G standards is not required. With this book the reader will learn: The fundamentals of the 5G NR physical layer (waveform, modulation, numerology, channel codes, and multi-antenna schemes). Why certain PHY technologies have been adopted for the 5G NR. The fundamental physical limitations imposed by radio wave propagation and hardware impairments. How the fundamental 5G NR physical layer functionalities (e.g., parameters/methods/schemes) should be realized. The content includes: A global view of 5G development – concept, standardization, spectrum allocation, use cases and requirements, trials, and future commercial deployments. The fundamentals behind the 5G NR physical layer specification in 3GPP. Radio wave propagation and channel modeling for 5G and beyond. Modeling of hardware impairments for future base stations and devices. Flexible multi-carrier waveforms, multi-antenna solutions, and channel coding schemes for 5G and beyond. A simulator including hardware impairments, radio propagation, and various waveforms. Ali Zaidi is a strategic product manager at Ericsson, Sweden. Fredrik Athley is a senior researcher at Ericsson, Sweden. Jonas Medbo and Ulf Gustavsson are senior specialists at Ericsson, Sweden. Xiaoming Chen is a professor at Xi’an Jiaotong University, China. Giuseppe Durisi is a professor at Chalmers University of Technology, Sweden, and a guest researcher at Ericsson, Sweden.
This book covers physical layer security (PHY) for wireless sensing and radio environment concepts along with the related security implications in terms of eavesdropping, disruption, manipulation and, in general, the exploitation of wireless sensing by unauthorised users.