Download Free Physical Fundamentals Of Nanomaterials Book in PDF and EPUB Free Download. You can read online Physical Fundamentals Of Nanomaterials and write the review.

Physical Fundamentals of Nanomaterials systematically describes the principles, structures and formation mechanisms of nanomaterials, in particular the concepts, principles and theories of their physical properties as well as the most important and commonly used preparation methods. The book aims to provide readers with a basic understanding of how nanomaterials are synthesized as well as their resultant physical properties it therefore focuses on the science of nanomaterials rather than applications, serving as an excellent starting point for researchers, materials scientists and advanced students who already possess a basic knowledge of chemistry and physics. - Provides thorough coverage of the physics and processes involved in the preparation of nanomaterials - Contains separate chapters for various types of synthesis methods, including gas phase, liquid phase, solid phase, and self-assembly - Coverage of properties includes separate chapters on mechanical, thermal, optical, electrical and magnetic
WINNER 2009 CHOICE AWARD OUTSTANDING ACADEMIC TITLE! Nanotechnology is no longer a subdiscipline of chemistry, engineering, or any other field. It represents the convergence of many fields, and therefore demands a new paradigm for teaching. This textbook is for the next generation of nanotechnologists. It surveys the field’s broad landscape, exploring the physical basics such as nanorheology, nanofluidics, and nanomechanics as well as industrial concerns such as manufacturing, reliability, and safety. The authors then explore the vast range of nanomaterials and systematically outline devices and applications in various industrial sectors. This color text is an ideal companion to Introduction to Nanoscience by the same group of esteemed authors. Both titles are also available as the single volume Introduction to Nanoscience and Nanotechnology Qualifying instructors who purchase either of these volumes (or the combined set) are given online access to a wealth of instructional materials. These include detailed lecture notes, review summaries, slides, exercises, and more. The authors provide enough material for both one- and two-semester courses.
With this handbook, the distinguished team of editors has combined the expertise of leading nanomaterials scientists to provide the latest overview of this field. They cover the whole spectrum of nanomaterials, ranging from theory, synthesis, properties, characterization to application, including such new developments as quantum dots, nanoparticles, nanoporous materials, nanowires, nanotubes, and nanostructured polymers. The result is recommended reading for everybody working in nanoscience: Newcomers to the field can acquaint themselves with this exciting subject, while specialists will find answers to all their questions as well as helpful suggestions for further research.
Fundamentals of Nanoparticles: Classifications, Synthesis Methods, Properties and Characterization explores the nanoparticles and architecture of nanostructured materials being used today in a comprehensive, detailed manner. This book focuses primarily on the characterization, properties and synthesis of nanoscale materials, and is divided into three major parts. This is a valuable reference for materials scientists, and chemical and mechanical engineers working in R&D and academia, who want to learn more about how nanoparticles and nanomaterials are characterized and engineered. Part one covers nanoparticles formation, self-assembly in the architecture nanostructures, types and classifications of nanoparticles, and signature physical and chemical properties, toxicity and regulations. Part two presents different ways to form nanometer particles, including bottom-up and top-down approaches, the classical and non-classical theories of nanoparticles formation and self-assembly, surface functionalization and other surface treatments to allow practical use. Part three covers characterization of nanoparticles and nanostructured materials, including the determination of size and shape, in addition to atomic and electronic structures and other important properties. - Includes new physical and chemical techniques for the synthesis of nanoparticles and architecture nanostructures - Features an in-depth treatment of nanoparticles and nanostructures, including their characterization and chemical and physical properties - Explores the unusual properties of materials that are developed by modifying their shape and composition and by manipulating the arrangement of atoms and molecules - Explains important techniques for the synthesis, fabrication and the characterization of complex nano-architectures
Supported by over 90 illustrations, this timely resource offers you a broad introduction to nanomaterials, covering basic principles, technology, and cutting-edge applications. From quantum mechanics, band structure, surface chemistry, thermodynamics, and kinetics of nanomaterials, to nanomaterial characterization, nanoparticle synthesis, nanoelectronics, NEMS, and Nano-Bio materials, this groundbreaking volume offers you a solid understanding of a wide range of fundamental topics and brings you up-to-date with the latest developments in the field.
Chemistry of Nanomaterials: Fundamentals and Applications provides a foundational introduction to this chemistry. Beginning with an introduction to the field of nanoscience and technology, the book goes on to outline a whole range of important effects, interactions and properties. Tools used to assess such properties are discussed, followed by chapters putting this fundamental knowledge in context by providing examples of nanomaterials and their applications in the real world. Drawing on the experience of its expert authors, this book is an accessible introduction to the interactions at play in nanomaterials for both upper-level students and researchers. - Highlights the foundational chemical interactions at play in nanomaterials - Provides accessible insight for readers across multidisciplinary fields - Places nanomaterial chemistry in the context of the broader field of nanoscale research
This is the 2nd edition of the original “Nanostructures and Nanomaterials” written by Guozhong Cao and published by Imperial College Press in 2004.This important book focuses not only on the synthesis and fabrication of nanostructures and nanomaterials, but also includes properties and applications of nanostructures and nanomaterials, particularly inorganic nanomaterials. It provides balanced and comprehensive coverage of the fundamentals and processing techniques with regard to synthesis, characterization, properties, and applications of nanostructures and nanomaterials. Both chemical processing and lithographic techniques are presented in a systematic and coherent manner for the synthesis and fabrication of 0-D, 1-D, and 2-D nanostructures, as well as special nanomaterials such as carbon nanotubes and ordered mesoporous oxides. The book will serve as a general introduction to nanomaterials and nanotechnology for teaching and self-study purposes.
Praise for the first edition "clear and informative” ―Chemistry World The authors provide the perfect training tool for the workforce in nanotech development by presenting the fundamental principles that govern the fabrication, characterization, and application of nanomaterials. This edition represents a complete overhaul, giving a much more complete, self-contained introduction. As before, the text avoids excessive mathematical detail and is written in an easy to follow, appealing style suitable for anyone, regardless of background in physics, chemistry, engineering, or biology. The organization has been revised to include fundamental physical chemistry and physics pertaining to relevant electrical, mechanical, and optical material properties. Incorporates new and expanded content on hard materials, semiconductors for nanoelectronics, and nonlinear optical materials. Adds many more worked examples and end-of-chapter problems. Provides more complete coverage of fundamentals including relevant aspects of thermodynamics, kinetics, quantum mechanics, and solid-state physics, and also significantly expands treatment of solid-phase systems. Malkiat S. Johal is a professor of physical chemistry at Pomona College, and earned his doctorate in physical chemistry at the University of Cambridge, UK. Lewis E. Johnson is a research scientist at the University of Washington, where he also earned his doctorate in chemistry and nanotechnology.
This book covers the basics of nanotechnology and provides a solid understanding of the subject. Starting from a brush-up of the basic quantum mechanics and materials science, the book helps to gradually build up understanding of the various effects of quantum confinement, optical-electronic properties of nanoparticles and major nanomaterials. The book covers the various physical, chemical and hybrid methods of nanomaterial synthesis and nanofabrication as well as advanced characterization techniques. It includes chapters on the various applications of nanoscience and nanotechnology. It is written in a simple form, making it useful for students of physical and material sciences.
Biopolymeric Nanomaterials: Fundamentals and Applications outlines the fundamental design concepts and emerging applications of biopolymeric nanomaterials. The book also provides information on emerging applications of biopolymeric nanomaterials, including in biomedicine, manufacturing and water purification, as well as assessing their physical, chemical and biological properties. This is an important reference source for materials scientists, engineers and biomedical scientists who are seeking to increase their understanding of how polymeric nanomaterials are being used for a range of biomedical and industrial applications. Biopolymeric nanomaterials refer to biocompatible nanomaterials, consisting of biopolymers, such as protein (silk, collagen, gelatin, ß-casein, zein, and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch, and heparin). Biopolymeric nanomaterials may be used as i) delivery systems for bioactive compounds in food application, (ii) for delivery of therapeutic molecules (drugs and genes), or for (iii) tissue engineering. Provides information on the design concepts and synthesis of biopolymeric nanomaterials in biomedical and industrial applications Highlights the major properties and processing methods for biopolymeric nanomaterials Assesses the major challenges of producing biopolymeric nanomaterials on an industrial scale