Download Free Physical Chemistry Of Cold Gas Phase Functional Molecules And Clusters Book in PDF and EPUB Free Download. You can read online Physical Chemistry Of Cold Gas Phase Functional Molecules And Clusters and write the review.

This book describes advanced research on the structures and photochemical properties of polyatomic molecules and molecular clusters having various functionalities under cold gas-phase conditions. Target molecules are crown ethers, polypeptides, large size protonated clusters, metal clusters, and other complex polyatomic molecules of special interest. A variety of advanced frequency and time-domain laser spectroscopic methods are applied. The book begins with the principle of an experimental setup for cold gas-phase molecules and various laser spectroscopic methods, followed by chapters on investigation of specific molecular systems. Through a molecular-level approach and analysis by quantum chemical calculation, it is possible to learn how atomic and molecular-level interactions (van der Waals, hydrogen-bonding, and others) control the specific properties of molecules and clusters. Those properties include molecular recognition, induced fitting, chirality, proton and hydrogen transfer, isomerization, and catalytic reaction. The information will be applicable to the design of new types of functional molecules and nanoparticles in the broad area that includes applied chemistry, drug delivery systems, and catalysts.
This book brings together, for the first time, the results of recent research in areas ranging from the chemistry of cold interstellar clouds (10-20 K), through laboratory studies of the spectroscopy and kinetics of ions, radicals and molecules, to studies of molecules in liquid helium droplets, to attempts to create molecular (as distinct from atomic) Bose-Einstein condensates.
The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.
Recent advances in experimental techniques now enable researchers to produce in a laboratory clusters of atoms of desired composition from any of the elements of the periodic table. This has created a new area of research into novel materials since clusters cannot be regarded either as a "large" molecule or as a fragment of the bulk. Both experimental and theoretical studies are revealing unusual properties that are not ob served in solid state environments. The structures of micro-clusters are found to be significantly distorted from the most symmetric arrangement, some even exhibiting pentagonal symmetry commonly found in icosahedric structures. The unusual stability of certain clusters, now described as "magic number species", shows striking similarities with the nuclear shell structure. The relative stabilities of clusters depend not only on the composition of the clusters but also on their charged states. The studies on spontaneous fragmentation of mUltiply charged clusters, commonly referred to as Coulomb explosion, illustrate the role of electronic bonding mechanisms on stability of clusters. The effect of foreign atoms on geometry and stability of clusters and the interaction of gas atoms with clusters are showing promise for an indepth understanding of chemisorption and catalysis. The magnetic and optical properties are dependent not only on cluster size but also on its geometry. These findings have the potential for aiding industry in the area of micro-electronics and catalysis.
Thanks to the progress made in instruments and techniques, the methods in physical chemistry have developed rapidly over the past few decades, making them increasingly valuable for scientists of many disciplines. These two must-have volumes meet the needs of the scientific community for a thorough overview of all the important methods currently used. As such, this work bridges the gap between standard textbooks and review articles, covering a large number of methods, as well as the motivation behind their use. A uniform approach is adopted throughout both volumes, while the critical comparison of the advantages and disadvantages of each method makes this a valuable reference for physical chemists and other scientists working with these techniques.
The infrared and Raman spectroscopy have applications in numerous fields, namely chemistry, physics, astronomy, biology, medicine, geology, mineralogy etc. This book provides some examples of the use of vibrational spectroscopy in supramolecular chemistry, inorganic chemistry, solid state physics, but also in the fields of molecule-based materials or organic-inorganic interfaces.
Authored by one of the world's leading experts in the chemistry of lighter noble gases, this comprehensive monograph fills the need for an up-to-date review of the diverse experimental techniques and theoretical methods currently in practice. After reviewing the experiments breaking the paradigm of "non-reactive" noble gases, the physico-chemical background is introduced. Besides the emphasis on gas phase reactions, the author presents other relevant systems, such as chemistry in the bulk phase, under high pressure, and cold matrices. The discussion of gas-phase chemistry of the noble gases covers neutral and ionic compounds, diatomic molecules, complexes with small molecules and metal compounds, up to large clusters.
Explores the theoretical and experimental aspects of cold and ultracold molecular collisions, for students and researchers in theoretical chemistry and chemical reaction/molecular dynamics.
Atomic clusters are aggregates of atoms containing a few to several thousand atoms. Due to the small size of these pieces of matter, the properties of atomic clusters in general are different from those of the corresponding material in the macroscopic bulk phase. This monograph presents the main developments of atomic clusters and the current status of the field. The book treats different types of clusters with very different properties: clusters in which the atoms or molecules are tied by weak van der Waals interactions, metallic clusters, clusters of ionic materials, and network clusters made of typical covalent elements. It includes methods of experimental cluster synthesis as well as the structural, electronic, thermodynamic and magnetic properties of clusters, covering both experiments and the theoretical work that has led to our present understanding of the different properties of clusters. The question of assembling nanoclusters to form solids with new properties is also considered. Having an adequate knowledge of the properties of clusters can be of great help to any scientist working with objects of nanometric size. On the other hand, nanoclusters are themselves potentially important in fields like catalysis and nanomedicine.