Download Free Physical Chemical Nitrogen Removal Wastewater Treatment Book in PDF and EPUB Free Download. You can read online Physical Chemical Nitrogen Removal Wastewater Treatment and write the review.

Describes 3 basic physical-chemical nitrogen-removal techniques available for application in wastewater treatment plants and discusses advantages and disadvantages of each process. Techniques include: ammonia stripping, selective ion exchange, and breakpoint chlorination.
In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.
The books currently available on this subject contain some elements of physical-chemical treatment of water and wastewater but fall short of giving comprehensive and authoritative coverage. They contain some equations that are not substantiated, offering empirical data based on assumptions that are therefore difficult to comprehend. This text brings together the information previously scattered in several books and adds the knowledge from the author's lectures on wastewater engineering. Physical-Chemical Treatment of Water and Wastewater is not only descriptive but is also analytical in nature. The work covers the physical unit operations and unit processes utilized in the treatment of water and wastewater. Its organization is designed to match the major processes and its approach is mathematical. The authors stress the description and derivation of processes and process parameters in mathematical terms, which can then be generalized into diverse empirical situations. Each chapter includes design equations, definitions of symbols, a glossary of terms, and worked examples. One author is an environmental engineer and a professor for over 12 years and the other has been in the practice of environmental engineering for more than 20 years. They offer a sound analytical mathematical foundation and description of processes. Physical-Chemical Treatment of Water and Wastewater fills a niche as the only dedicated textbook in the area of physical and chemical methods, providing an analytical approach applicable to a range of empirical situations Contents Introduction Characteristics of Water and Wastewater Quantity of Water and Wastewater Constituents of Water and Wastewater Unit Operations of Water and Wastewater Treatment Flow Measurements and Flow and Quality Equalizations Pumping Screening, Settling, and Flotation Mixing and Flocculation Conventional Filtration Advanced Filtration and Carbon Adsorption Aeration, Absorption, and Stripping Unit Processes of Water and Wastewater Treatment Water Softening Water Stabilization Coagulation Removal of Iron and Manganese by Chemical Precipitation Removal of Phosphorus by Chemical Precipitation Removal of Nitrogen by Nitrification-Denitrification Ion Exchange Disinfection
This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.
Proceedings of the Conference on Nitrogen as a Water Pollutant
This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time. Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research. Contents ASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2: Introduction, ASM 2, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Wastewater Characterization for Activated Sludge Processes, Calibration of the ASM 2, Model Limitations, Conclusion, Bibliography ASM 1: Introduction, Method of Model Presentation, Model Incorporating Carbon Oxidation Nitrification and Denitrification, Characterization of Wastewater and Estimation of Parameter Values, Typical Parameter Ranges, Default Values, and Effects of Environmental Factors, Assumptions, Restrictions and Constraints, Implementation of the Activated Sludge Model Scientific and Technical Report No.9
Nitrification and Denitrification in the Activated Sludge Process, the first in a series on the microbiology of wastewater treatment, comprises the critical topics of cost-effective operation, permit compliance, process control, and troubleshooting in wastewater treatment plants. Avoiding the technical jargon, chemical equations, and kinetics that typically accompany such texts, Nitrification and Denitrification in the Activated Sludge Process directly addresses plant operators and technicians, providing necessary information for understanding the microbiology and biological conditions that occur in the treatment process. Of special interest to wastewater treatment plant operators are the bacteria that degrade nitrogenous wastes–the nitrifying bacteria–and the bacteria that degrade carbonaceous wastes–the cBOD-removing bacteria. Both groups of bacteria need to be routinely monitored and operational conditions favorably adjusted to ensure desired nitrification. Each chapter in this groundbreaking study offers a better understanding of the importance of nitrification and denitrification and the bacteria involved in these crucial processes. Chapters include: Organotrophs The Wastewater Nitrogen Cycle Nitrite Ion Accumulation Dissolved Oxygen Denitrifying Bacteria Gaseous End Products Free Molecular Oxygen The Occurrence of Denitrification
For information on the online course in Biological Wastewater Treatment from UNESCO-IHE, visit: http://www.iwapublishing.co.uk/books/biological-wastewater-treatment-online-course-principles-modeling-and-design Over the past twenty years, the knowledge and understanding of wastewater treatment have advanced extensively and moved away from empirically-based approaches to a first principles approach embracing chemistry, microbiology, physical and bioprocess engineering, and mathematics. Many of these advances have matured to the degree that they have been codified into mathematical models for simulation with computers. For a new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access is not readily available to advanced level tertiary education courses in wastewater treatment. Biological Wastewater Treatment addresses this deficiency. It assembles and integrates the postgraduate course material of a dozen or so professors from research groups around the world that have made significant contributions to the advances in wastewater treatment. The book forms part of an internet-based curriculum in biological wastewater treatment which also includes: Summarized lecture handouts of the topics covered in book Filmed lectures by the author professors Tutorial exercises for students self-learning Upon completion of this curriculum the modern approach of modelling and simulation to wastewater treatment plant design and operation, be it activated sludge, biological nitrogen and phosphorus removal, secondary settling tanks or biofilm systems, can be embraced with deeper insight, advanced knowledge and greater confidence.