Download Free Physical And Chemical Properties Of Cement And Aggregate In Concrete Book in PDF and EPUB Free Download. You can read online Physical And Chemical Properties Of Cement And Aggregate In Concrete and write the review.

Paper 1: The pore-size distribution present in some carbonate rocks was determined as part of an investigation concerned with the properties of aggregate which affect the durability of portland cement concrete. Paper 2: 52 concrete aggregates were evaluated by means of the rapid chemical test for potential alkali-aggregate reactivity and the results generally showed good correlation with the data obtained in the mortar bar tests. Paper 3: It is demonstrated that the types of carbonate aggregate from the cedar valley formation in Iowa which have been classed as acceptable or unacceptable on the basis of service records, can also be differentiated on the basis of their reactivity with silica and/or fluoride in aqueous solution. Paper 4: Mixtures of calcium hydroxide, pozzolan, and water were reacted at 100 F for 1 to 6 months, and the reaction products were examined by x-ray diffraction and thermal analysis.
Bringing together in one volume the latest research and information, this book provides a detailed guide to the selection and use of aggregates in concrete. After an introduction defining the purpose and role of aggregates in concrete, the authors present an overview of aggregate sources and production techniques, followed by a detailed s
Lea's Chemistry of Cement and Concrete deals with the chemical and physical properties of cements and concretes and their relation to the practical problems that arise in manufacture and use. As such it is addressed not only to the chemist and those concerned with the science and technology of silicate materials, but also to those interested in the use of concrete in building and civil engineering construction. Much attention is given to the suitability of materials, to the conditions under which concrete can excel and those where it may deteriorate and to the precautionary or remedial measures that can be adopted. First published in 1935, this is the fourth edition and the first to appear since the death of Sir Frederick Lea, the original author. Over the life of the first three editions, this book has become the authority on its subject. The fourth edition is edited by Professor Peter C. Hewlett, Director of the British Board of Agrement and visiting Industrial Professor in the Department of Civil Engineering at the University of Dundee. Professor Hewlett has brought together a distinguished body of international contributors to produce an edition which is a worthy successor to the previous editions.
Bringing together in one volume the latest research and information, this book provides a detailed guide to the selection and use of aggregates in concrete. After an introduction defining the purpose and role of aggregates in concrete, the authors present an overview of aggregate sources and production techniques, followed by a detailed study of their physical, mechanical and chemical properties. This knowledge is then applied to the use of aggregates in both plastic and hardened concretes, and in the overall mix design. Special aggregates and their applications are discussed in detail, as are the current main specifications, standards and tests.
In spite of the increasing use and demand for lightweight aggregate concrete (LWAC), there is still a lack of adequate explanations to understand the mechanisms responsible for the strength and durability properties of LWAC. This book is written to give an overall picture of LWAC, from the historical background, aggregate production, proportioning and production of concrete, to applications in structures. Physical properties and chemical durability are described in detail. The physical properties include density, strength, shrinkage, and elasticity. Chemical durability includes resistance to acids, chloride ingress, carbonation, and freeze-thaw resistance. Fire resistance is also included, which is seldom considered, but is a very important aspect of the safety of the structure. Microstructure development and its relation to the durability properties of LWAC generally are not highlighted in the literature. The development of bonds, the microstructure with different binder systems, and different types of lightweight aggregates are explained. They show how lightweight aggregate concrete differs from normal weight concrete. The chapters on chloride ingress and freeze-thaw resistance are detailed because of the use of LWAC in offshore construction. The economical aspects of using LWAC are also reviewed. Emphasis is placed on the fact that although the cost of LWAC is high, the total cost of construction has to be considered, including the cost of transport, reinforcement, etc. When these are considered then LWAC becomes cheaper and attractive. The life cycle cost of the concrete is another consideration for calculating long-term savings on maintenance costs.
Portland cement is one of the most traditional of construction materials. Rising costs of the energy required for its manufacture and the increasing interest in understanding the mechanisms of concrete deterioration, as well as the importance of optimising the use of Portland cement in high quality concrete, have continued to sustain interest in this important material. This second edition of this popular book provides an up-to-date introduction to the raw materials and manufacturing processes of Portland cement. It gives an introductory account of cement composition, manufacture, quality assessment, hydration and the resulting microstructure-physical property relationships, and some mechanisms of the chemical degradation of hardened cement paste. The book is primarily intended for students of materials sciences and graduates in pure science or engineering entering the cement or concrete industries. However anyone requiring a good clear introduction to this material will find this book provides helpful information.