Download Free Physical Analysis Modeling And Design Of Nanoscale Double Gate Mosfets With Gate Source Drain Underlap Book in PDF and EPUB Free Download. You can read online Physical Analysis Modeling And Design Of Nanoscale Double Gate Mosfets With Gate Source Drain Underlap and write the review.

The viability of gate-source/drain underlap as a design parameter, in addition to typical device design parameters like gate length, fin thickness, etc., is investigated in terms of the sensitivity of FinFET performance to the variations of process parameters that influence underlap properties; numerical simulators with UFDG aid this investigation. It is found that while variation in the performance of inverter-based circuits, like the ring oscillator, is reasonable, stability of static random access memory (SRAM) shows wide variation in performance for shorter underlap lengths. Finally, a physics-based compact model for gate tunneling current in DG MOSFETs is developed, verified, and implemented in UFDG to enable reliable prediction of static power consumption in nanoscale FinFET circuits. Model predictions corroborate earlier results that for thinner oxides, present-day silicon oxynitride has to be replaced with high-k dielectrics to control static leakage. However, use of underlap can relax the oxide thickness requirement and hence delay the introduction of high-k dielectrics in FinFET technology.
We present a physical model for fringe capacitance (C[subscript]f) in DG MOSFETs with non-abrupt S/D junctions. We model Cf in terms of the device structure and short-channel effects (SCEs). The model is implemented in our physical/process based compact model, UFDG, and will enable quasi-predictive device/circuit simulations. In undoped UTB FinFETs, the lateral S/D doping profile, N[subscriptSD](y), defines the tradeoff between SCEs and parasitic resistance, R[subscript]S/D, via gate-source/drain underlap. We demonstrate a reverse-engineering methodology to extract N[subscriptSD](y) from FinFET C[subscriptG]-V[subscript]GS and I[subscriptDS]-V[subscript]GS data. The extracted N[subscriptSD](y) is then used to redesign the S/D process to effect a better tradeoff between SCEs and R[subscript]S/D. Finally, we discuss the degradation of mobility in short-channel FinFETs possibly due to S/D defects/dopants. We explore possible causes of the phenomenon and make device processing suggestions to help mitigate the effect.
Understand the theory, design and applications of the two principal candidates for the next mainstream semiconductor-industry device with this concise and clear guide to FD/UTB transistors. • Describes FD/SOI MOSFETs and 3-D FinFETs in detail • Covers short-channel effects, quantum-mechanical effects, applications of UTB devices to floating-body DRAM and conventional SRAM • Provides design criteria for nanoscale FinFET and nanoscale thin- and thick-BOX planar FD/SOI MOSFET to help reduce technology development time • Projects potential nanoscale UTB CMOS performances • Contains end-of-chapter exercises. For professional engineers in the CMOS IC field who need to know about optimal non-classical device design and integration, this is a must-have resource.
Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides a valuable learning and reference tool for students, researchers and engineers. Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction, extensively referenced, and containing more than 180 illustrations, is an innovative and integral new book on MOSFETs design technology.
Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.
This book consists of four chapters to address at different modeling levels for different nanoscale MOS structures (Single- and Multi-Gate MOSFETs). The collection of these chapters in the book are attempted to provide a comprehensive coverage on the different levels of electrostatics and transport modeling for these devices, and relationships between them. In particular, the issue of quantum transport approaches, analytical predictive 2D/3D modeling and design-oriented compact modeling. It should be of interests to researchers working on modeling at any level, to provide them with a clear explanation of theapproaches used and the links with modeling techniques for either higher or lower levels.
In this thesis, we explore the performance characteristics, speci cally the drain current drive, of the double gate silicon MOSFET device, using MoCa, the Monte Carlo simulator. Drain current performance is analyzed as a result of varying di erent parameters like oxide thickness, dielectric constant, and misalignment of top and bottom gates. An interesting result is obtained in the misalignment analysis, according to which overlap with source increases the drain current, even in the presence of drain underlap. Misalignment can be tolerable in devices up to a certain extent depending on the application. High- dielectrics and small oxide thickness are shown to improve the current drive. Comparison is made between quantum-corrected and classical simulation results. Change in potential and concentration pro les in the quantum-corrected simulation is the result of coupling between the Schr odinger and the Poisson equations. The drain current increase compared to a conventional MOSFET of the same dimensions and materials is shown to be signi cant. Main features of the full band quantum-corrected Monte Carlo simulator are delineated and its signi cance at the mesoscopic scale is discussed. Finally recent research on electrothermal analysis is reviewed and its importance in relation to the current work is explained. An outline of possible future work is presented for both the simulator and the device.
The scaling of MOSFETs as dictated by the ITRS has continued unabated for many years and enabled the worldwide semiconductor market to grow at a phenomenal rate. However, the ITRS scaling is reaching hard limitations. One of the most significant problems is the maintenance of electrostatic integrity, which demands the use of extremely thin gate oxides to provide the required high gate capacitance, as well as the use of high channel doping to control short channel effects. These requirements lead to low device performance and tunneling current becomes quite prominent. This book introduces a promising solution to these problems, that is Double Gate MOSFET with high-k gate stack. This book provides an elaborate performance analysis of DG MOSFET with high-k material on both top and bottom gate stack in terms of drain current & subthreshold characteristics using 2D quantum simulator nanoMOS 4.0.