Download Free Phylogenetic Interpretations Of Macroevolution In Deep Time Book in PDF and EPUB Free Download. You can read online Phylogenetic Interpretations Of Macroevolution In Deep Time and write the review.

The prerequisite to investigating the underlying causes behind mass extinction is a profound understanding of the evolutionary history of both living and dead species. It is especially important to appreciate the significance of such studies in extinct organisms; especially in organisms that were abundant in a certain geologic era, but have subsequently dwindled or become extinct. Such studies should help to accurately evaluate patterns of evolution in extinct species lineages and help predict the same in its modern analogs. The book includes cutting edge research in evolutionary biology that should serve as a starting point for conservation. ​
Phylogenetic comparative approaches are powerful analytical tools for making evolutionary inferences from interspecific data and phylogenies. The phylogenetic toolkit available to evolutionary biologists is currently growing at an incredible speed, but most methodological papers are published in the specialized statistical literature and many are incomprehensible for the user community. This textbook provides an overview of several newly developed phylogenetic comparative methods that allow to investigate a broad array of questions on how phenotypic characters evolve along the branches of phylogeny and how such mechanisms shape complex animal communities and interspecific interactions. The individual chapters were written by the leading experts in the field and using a language that is accessible for practicing evolutionary biologists. The authors carefully explain the philosophy behind different methodologies and provide pointers – mostly using a dynamically developing online interface – on how these methods can be implemented in practice. These “conceptual” and “practical” materials are essential for expanding the qualification of both students and scientists, but also offer a valuable resource for educators. Another value of the book are the accompanying online resources (available at: http://www.mpcm-evolution.com), where the authors post and permanently update practical materials to help embed methods into practice.
“An enjoyable read that provides a substantial amount of detail on the biology, ecology, and distribution of these fantastic animals . . . Highly recommended.” —Choice More than 10,000 years ago spectacularly large mammals roamed the pampas and jungles of South America. This book tells the story of these great beasts during and just after the Pleistocene, the geological epoch marked by the great ice ages. Megafauna describes the history and way of life of these animals, their comings and goings, and what befell them at the beginning of the modern era and the arrival of humans. It places these giants within the context of the other mammals then alive, describing their paleobiology—how they walked; how much they weighed; their diets, behavior, biomechanics; and the interactions among them and with their environment. It also tells the stories of the scientists who contributed to our discovery and knowledge of these transcendent creatures and the environment they inhabited. The episode known as the Great American Biotic Interchange, perhaps the most important of all natural history “experiments,” is also an important theme of the book, tracing the biotic events of both North and South America that led to the fauna and the ecosystems discussed in this book. “Collectively, this book brings attention to the discovery and natural history of ancient beasts in South America while providing a broader temporal and geographic background that allows readers to understand their evolution and potential immigration to South America.” —Quarterly Review of Biology “An excellent volume . . . This book is likely to facilitate progress in the understanding of fossil mammals from the Americas.” —Priscum
This work weaves important strands of the paleontological literature into a coherent worldview that emphasizes the importance of understanding the geological record.
Coastal exposures of the Santa Cruz Formation in southern Patagonia have been a fertile ground for recovery of Early Miocene vertebrates for more than 100 years. This volume presents a comprehensive compilation of important mammalian groups which continue to thrive today. It includes the most recent fossil finds as well as important new interpretations based on ten years of fieldwork by the authors. A key focus is placed on the paleoclimate and paleoenvironment during the time of deposition in the Middle Miocene Climatic Optimum (MMCO) between twenty and fifteen million years ago. The authors present the first reconstruction of what climatic conditions were like and present important new evidence of the geochronological age, habits and community structures of fossil bird and mammal species. Academic researchers and graduate students in paleontology, paleobiology, paleoecology, stratigraphy, climatology and geochronology will find this a valuable source of information about this fascinating geological formation.
The annual Evolutionary Biology Meetings in Marseilles serve to gather leading scientists, promote the exchange of ideas and encourage the formation of international collaborations. This book contains the most essential contributions presented at the 14th Evolutionary Biology Meeting, which took place in September 2010. It comprises 19 chapters organized according to the following categories: · Evolutionary Biology Concepts · Biodiversity and Evolution · Macroevolution · Genome Evolution Offering an up-to-date overview of recent results in the field of evolutionary biology, this book is an invaluable source of information for scientists, teachers and advanced students.
This book is divided in two parts, the first of which shows how, beyond paleontology and systematics, macroevolutionary theories apply key insights from ecology and biogeography, developmental biology, biophysics, molecular phylogenetics and even the sociocultural sciences to explain evolution in deep time. In the second part, the phenomenon of macroevolution is examined with the help of real life-history case studies on the evolution of eukaryotic sex, the formation of anatomical form and body-plans, extinction and speciation events of marine invertebrates, hominin evolution and species conservation ethics. The book brings together leading experts, who explain pivotal concepts such as Punctuated Equilibria, Stasis, Developmental Constraints, Adaptive Radiations, Habitat Tracking, Turnovers, (Mass) Extinctions, Species Sorting, Major Transitions, Trends and Hierarchies – key premises that allow macroevolutionary epistemic frameworks to transcend microevolutionary theories that focus on genetic variation, selection, migration and fitness. Along the way, the contributing authors review ongoing debates and current scientific challenges; detail new and fascinating scientific tools and techniques that allow us to cross the classic borders between disciplines; demonstrate how their theories make it possible to extend the Modern Synthesis; present guidelines on how the macroevolutionary field could be further developed; and provide a rich view of just how it was that life evolved across time and space. In short, this book is a must-read for active scholars and because the technical aspects are fully explained, it is also accessible for non-specialists. Understanding evolution requires a solid grasp of above-population phenomena. Species are real biological individuals and abiotic factors impact the future course of evolution. Beyond observation, when the explanation of macroevolution is the goal, we need both evidence and theory that enable us to explain and interpret how life evolves at the grand scale.
The long-awaited revision of the industry standard on phylogenetics Since the publication of the first edition of this landmark volume more than twenty-five years ago, phylogenetic systematics has taken its place as the dominant paradigm of systematic biology. It has profoundly influenced the way scientists study evolution, and has seen many theoretical and technical advances as the field has continued to grow. It goes almost without saying that the next twenty-five years of phylogenetic research will prove as fascinating as the first, with many exciting developments yet to come. This new edition of Phylogenetics captures the very essence of this rapidly evolving discipline. Written for the practicing systematist and phylogeneticist, it addresses both the philosophical and technical issues of the field, as well as surveys general practices in taxonomy. Major sections of the book deal with the nature of species and higher taxa, homology and characters, trees and tree graphs, and biogeography—the purpose being to develop biologically relevant species, character, tree, and biogeographic concepts that can be applied fruitfully to phylogenetics. The book then turns its focus to phylogenetic trees, including an in-depth guide to tree-building algorithms. Additional coverage includes: Parsimony and parsimony analysis Parametric phylogenetics including maximum likelihood and Bayesian approaches Phylogenetic classification Critiques of evolutionary taxonomy, phenetics, and transformed cladistics Specimen selection, field collecting, and curating Systematic publication and the rules of nomenclature Providing a thorough synthesis of the field, this important update to Phylogenetics is essential for students and researchers in the areas of evolutionary biology, molecular evolution, genetics and evolutionary genetics, paleontology, physical anthropology, and zoology.
This book describes the models, methods and algorithms that are most useful for analysing the ever-increasing supply of molecular sequence data, with a view to furthering our understanding of the evolution of genes and genomes.
In the wake of the paleobiological revolution of the 1970s and 1980s, paleontologists continue to investigate far-reaching questions about how evolution works. Many of those questions have a philosophical dimension. How is macroevolution related to evolutionary changes within populations? Is evolutionary history contingent? How much can we know about the causes of evolutionary trends? How do paleontologists read the patterns in the fossil record to learn about the underlying evolutionary processes? Derek Turner explores these and other questions, introducing the reader to exciting recent work in the philosophy of paleontology and to theoretical issues including punctuated equilibria and species selection. He also critically examines some of the major accomplishments and arguments of paleontologists of the last 40 years.