Download Free Photovoltaics Beyond Silicon Book in PDF and EPUB Free Download. You can read online Photovoltaics Beyond Silicon and write the review.

Photovoltaics Beyond Silicon: Innovative Materials, Sustainable Processing Technologies, and Novel Device Structures presents the latest innovations in materials, processing and devices to produce electricity via advanced, sustainable photovoltaics technologies. The book provides an overview of the novel materials and device architectures that have been developed to optimize energy conversion efficiencies and minimize environmental impacts. Advances in technologies for harnessing solar energy are extensively discussed, with topics including materials processing, device fabrication, sustainability of materials and manufacturing, and the current state-of-the-art. Contributions from leading international experts discuss the applications, challenges and future prospects of research in this increasingly vital field, providing a valuable resource for students and researchers working in this area. Presents a comprehensive overview and detailed discussion of solar energy technology options for sustainable energy conversion Provides an understanding of the environmental challenges to be overcome and discusses the importance of efficient materials utilization for clean energy Looks at how to design materials processing and optimize device fabrication, including metrics such as power-to-weight ratio, effectiveness at EOL compared to BOL, life-cycle analysis
This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.
The book contains the proceedings of CAETS 2015 Convocation on ‘Pathways to Sustainability: Energy, Mobility and Healthcare Engineering’ that was held on October 13-14, 2015 in New Delhi. This 3 volume proceedings provide an international forum for discussion and communication of engineering and technological issues of common concern. This volume talks about ‘Healthcare’ and includes 11 chapters on diverse topics like regenerative engineering, big data analytics in healthcare, molecular science, rising expenditure on health issues, adoption of personalized medicine, etc. The contents of this volume will be useful to researchers and healthcare professionals.
Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, Microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.
Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
This handbook opens with an overview of solar radiation and how its energy can be tapped using photovoltaic cells. Other chapters cover the technology, manufacture and application of PV cells in real situations. The book ends by exploring the economic and business aspects of PV systems.
The capture and use of solar energy has been growing for many years, but only in recent times have advances in design and manufacture allowed us to see the incorporation of solar energy as a significant player in the renewable energy arena. Solar cells are at the heart of any photovoltaic system and in this book the various types are described and their characteristics reviewed. Going beyond materials, design and function, ‘Solar Cells’ also covers their testing, monitoring and calibration thus providing a comprehensive account of current activity in this important field of research and industry. ‘Solar Cells’ has been abstracted from the recent ‘Practical Handbook of Photovoltaics’ by the same editors (ISBN 185617 3909. 2003: Elsevier) Internationally-respected contributors from industry and academia Abstracted from ‘The Practical Handbook of Photovoltaics' by the same Editors A comprehensive source-book on all aspects of solar cells
Third-generation solar cells (SCs) are built on inorganic nanoparticles, hybrids, or semiconducting organic macromolecules. This book focuses on dye-sensitized solar cells, polymer/organic solar cells, copper/zinc/tin sulfide thin film cells, quantum dot solar cells and perovskite-based solar cells. Specific topics covered include device architecture, interface engineering, characterization, and fabrication techniques such as spin coating, blade coating, slot-die coating, dip coating, meniscus coating, spray coating, ink-jet printing, screen printing and electro deposition. Keywords: Fullerene-Containing Polymers, Light-Sensitive Dye, Organic Solar Cells, Perovskite Film, Quantum Dots, Thin Film Solar Cells.
The object of this book is to review and to discuss some important applications of polymers in electronics. The first three chapters discuss the current primary applications of polymers in semiconductor device manufacturing: polymers as resist materials for integrated circuit fabrication, polyimides as electronics packaging materials, and polymers as integrated circuits encapsulates.