Download Free Photosynthesis In Silico Book in PDF and EPUB Free Download. You can read online Photosynthesis In Silico and write the review.

Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems is a unique book that aims to show an integrated approach to the understanding of photosynthesis processes. In this volume - using mathematical modeling - processes are described from the biophysics of the interaction of light with pigment systems to the mutual interaction of individual plants and other organisms in canopies and large ecosystems, up to the global ecosystem issues. Chapters are written by 44 international authorities from 15 countries. Mathematics is a powerful tool for quantitative analysis. Properly programmed, contemporary computers are able to mimic complicated processes in living cells, leaves, canopies and ecosystems. These simulations - mathematical models - help us predict the photosynthetic responses of modeled systems under various combinations of environmental conditions, potentially occurring in nature, e.g., the responses of plant canopies to globally increasing temperature and atmospheric CO2 concentration. Tremendous analytical power is needed to understand nature's infinite complexity at every level.
Since the events crucial to plant photosynthesis are now known in molecular detail, this process is no longer nature's secret, but can for the first time be mimicked by technology. Broad in its scope, this book spans the basics of biological photosynthesis right up to the current approaches for its technical exploitation, making it the most complete resource on artificial photosynthesis ever published. The contents draw on the expertise of the Australian Artificial Photosynthesis Network, currently the world's largest coordinated research effort to develop effective photosynthesis technology. This is further backed by expert contributions from around the globe, providing an authoritative overview of current research worldwide.
Plant architecture is a major determinant of the resource use efficiency of crops. The architecture of a plant shows ontogenetic structural changes which are modified by multiple environmental factors: Plant canopies are exposed to natural fluctuations in light quantity and the dynamically changing canopy architecture induces local variations in light quality. Changing temperature conditions or water availability during growth additionally affect plant architecture and thus crop productivity, because plants have various options to adapt their architecture to the available resources. Meeting the challenge of ensuring food security we must understand the plant’s mechanisms for integrating and responding to an orchestra of environmental factors. ‘Virtual plants’ describe plant architecture in silico. Virtual plants have the potential to help us understanding the complex feedback processes between canopy architecture, multiple environmental factors and crop productivity. As a research tool, they have become increasingly popular within the last decade due to their great power of realistically visualizing the plant’s architecture. This Research Topic highlights current research carried out on modeling plant architecture in changing environments.
The development of a procedure to calculate the effect of certain environmental factors on the rate of photo-synthesis imposed mainly geometrical problems, which were solved in such a way that the actual calculation could be carried out by means of a computer. The calculation procedures have been used to study the. relative importance of the variables under various conditions. The results for a standard set of conditions, have been summarized in order to make it possible to estimate the daily photosynthesis at any time and place for a wide range of photosynthesis functions without a computer.
Abiotic and Biotic Stresses in Soybean Production: Soybean Production Volume One presents the important results of research in both field and greenhouse conditions that guide readers to effectively manage the chemical, physical, and biological factors that can put soybean production at risk. Including the latest in genetics, signaling, and biotechnology, the book identifies these types of stresses, their causes, and means of avoiding, then addresses existing stresses to provide a comprehensive overview of key production yield factors. By presenting important insights into the historical and emerging uses for soybean, the book educates readers on the factors for consideration as new uses are developed. It is an ideal complement to volume two, Environmental Stress Conditions in Soybean Production, that work together to provide valuable insights into crop protection. - Presents insights for the successful production of soybean based on chemical, physical and biologic challenges - Includes the latest specifics on soybean properties, growth, and production, including responses to different stresses and their alleviation methods - Offers recent advancements related to the process of N fixation and rhizobium, including signaling pathways and their practical use - Explores the production of rhizobium inoculums at large-scale levels
Since photosynthetic performance is a fundamental determinant of yield in the vast majority of crops, an understanding of the factors limiting photosynthetic productivity has a crucial role to play in crop improvement programmes. Photosynthesis, unlike the majority of physiological processes in plants, has been the subject of extensive studies at the molecular level for many years. This reductionist approach has resulted in the development of an impressive and detailed understanding of the mechanisms of light capture, energy transduction and carbohydrate biosynthesis, processes that are clearly central to the success of the plant and the productivity of crops. This volume examines in the widest context the factors determining the photosynthetic performance of crops. The emphasis throughout the book is on the setting for photosynthesis rather than the fundamental process itself. The book will prove useful to a wide range of plant scientists, and will encourage a more rapid integration of disciplines in the quest to understand and improve the productivity of crops by the procedures of classical breeding and genetic manipulation.
"Life Is Bottled Sunshine" [Wynwood Reade, Martyrdom of Man, 1924]. This inspired phrase is a four-word summary of the significance of photosynthesis for life on earth. The study of photosynthesis has attracted the attention of a legion of biologists, biochemists, chemists and physicists for over 200 years. Discoveries in Photosynthesis presents a sweeping overview of the history of photosynthesis investigations, and detailed accounts of research progress in all aspects of the most complex bioenergetic process in living organisms. Conceived of as a way of summarizing the history of research advances in photosynthesis as of millennium 2000, the book evolved into a majestic and encyclopedic saga involving all of the basic sciences. The book contains 111 papers, authored by 132 scientists from 19 countries. It includes overviews; timelines; tributes; minireviews on excitation energy transfer, reaction centers, oxygen evolution, light-harvesting and pigment-protein complexes, electron transport and ATP synthesis, techniques and applications, biogenesis and membrane architecture, reductive and assimilatory processes, transport, regulation and adaptation, Genetics, and Evolution; laboratories and national perspectives; and retrospectives that end in a list of photosynthesis symposia, books and conferences. Informal and formal photographs of scientists make it a wonderful book to have. This book is meant not only for the researchers and graduate students, but also for advanced undergraduates in Plant Biology, Microbiology, Cell Biology, Biochemistry, Biophysics and History of Science.
Cyanobacteria constitute the most widely distributed group of photosynthetic prokaryotes found in almost all realms of the earth and play an important role in Earth's nitrogen and carbon cycle. The gradual transformation from reducing atmosphere to oxidizing atmosphere was a turning point in the evolutionary history of the earth and made conditions for present life forms possible. Cyanobacteria: From Basic Science to Applications is the first reference volume that comprehensively discusses all aspects of cyanobacteria, including the diverse mechanisms of cyanobacteria for the advancement of cyanobacterial abilities, towards higher biofuel productivity, enhanced tolerance to environmental stress and bioactive compounds and potential for biofertilizers. - Describes cyanobacterial diversity, stress biology, and biotechnological aspects of cyanobacteria - Explores the global importance of cyanobacteria - Provides a broad compilation of research that deals with cyanobacterial stress responses in both controlled laboratory conditions as well as in their natural environment
Increasing concerns of global climatic change have stimulated research in all aspects of carbon exchange. This has restored interest in leaf-photosynthetic models to predict and assess changes in photosynthetic CO2 assimilation in different environments. This is a comprehensive presentation of the most widely used models of steady-state photosynthesis by an author who is a world authority. Treatments of C3, C4 and intermediate pathways of photosynthesis in relation to environment have been updated to include work on antisense transgenic plants. It will be a standard reference for the formal analysis of photosynthetic metabolism in vivo by advanced students and researchers.
“Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation” was conceived as a comprehensive treatment touching on most of the processes important for photosynthesis. Most of the chapters provide a broad coverage that, it is hoped, will be accessible to advanced undergraduates, graduate students, and researchers looking to broaden their knowledge of photosynthesis. For biologists, biochemists, and biophysicists, this volume will provide quick background understanding for the breadth of issues in photosynthesis that are important in research and instructional settings. This volume will be of interest to advanced undergraduates in plant biology, and plant biochemistry and to graduate students and instructors wanting a single reference volume on the latest understanding of the critical components of photosynthesis.